

Metabolomic assessment of desiccation and rehydration processes of cryptobiotic plants

<u>Jaume Bogarra Grau</u> (jaumebg99@gmail.com), Miriam Pérez-Cova, Joaquim Jaumot Chemometrics for Environmental Omics group, Dept. of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain

RESULTS

INTRODUCTION

- * Water scarcity limits plant distribution and crop production worldwide. Desiccation tolerant species such as *Selaginella lepidophylla* have the ability to survive vegetative tissue drying for prolonged periods of time and 'resurrect' when water is again available (cryptobiosis).
- The study of the plant metabolome changes during the cryptobiotic processes can provide a detailed understanding of the organism's physiological responses to water scarcity stress. [1]

GOALS

- ❖ Evaluate changes in *Selaginella lepidophylla* metabolism during the hydration and desiccation processes.
- Identify potential markers for a better understanding of the metabolic pathways affected.

EXPERIMENTAL PROCEDURE

Chromatographic run:
112 samples
26 time points
(12 dessication – 14
hydration) x 4 replicates
8 QCs

 Mass Spectrometer Waters LCT Premier oa-TOF
Ionization ESI (+) and (-)
Mass range Full scan spectra from 80 to 1.000 Da
Scan cycle 0,3 s

DATA ANALYSIS

ROI approach for feature extraction Multivariate analysis MCR-ALS for unravelling cryptobiotic processes Features matrix MCR-ALS Desiccation process Hydration process Hydration process

MCR-ALS resolved concentration profiles (**C**) shows the kinetics from each process. Corresponding spectral profiles (**S**) elucidate the short and long term metabolites responsible for the cryptobiotic adaptation.

Tentatively identified metabolites

Component	ROI m/z value	Adduct	Proposed metabolite	m (Da)	Error (ppm)
1	236,1479	$[M+NH_4]^+$	N-Acetylserotonin	218,1055	36
2	269,0922	[M+H]+	Inosine	268,0808	15
	539,0974	$[M+H]^{+}$	Amentoflavone	538,0900	0
3	236,2278	[M+NH ₄]+	(3E,7E)-4,8,12-Trimethyl- 1,3,7,11-tridecatetraene	218,2035	40
	398,2011	$[M+NH_4]^+$	Prenyl arabinosyl- $(1 \rightarrow 6)$ - glucoside	380,1682	2
			or Prenyl apiosyl-(1→6)- glucoside		
4	192,0620	$[M+NH_4]^+$	Brassilexin	174,0252	16
	236,2278	$[M+NH_4]^+$	(3E,7E)-4,8,12-Trimethyl- 1,3,7,11-tridecatetraene	218,2035	40
	539,0974	$[M+H]^{+}$	Amentoflavone	538,0900	0
5	471,2904	[M+H]+	Ceanothine C	470,2893	13
	552,2295	$[M+NH_4]^+$	Isosyringinoside	534,1949	1
	718,2925	[M+H] ⁺	5-Methyltetrahydropteroyltri-L- glutamic acid	717,3083	19

CONCLUSIONS

- Compounds tentatively identified are mainly antioxidants and osmoprotectants, allowing hypothesizing that global response is towards protecting the plant from oxidative damage. [2, 3] However, biomarkers identification require also confirmation using an MS/MS analysis to reinforce the reliability of the identified metabolites.
- ❖ Further work contemplated is performing an untargeted lipidomic analysis to completely determine the metabolic pathways affected when applying the stress.

REFERENCES

- [1] Lankadurai, B.P., Environmental metabolomics: An emerging approach to study organism responses to environmental stressors, *Environmental Reviews*. 2013, 21,180-205.
- [2] Lee, K., Flavanoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants, *Journal of Pineal Research*. 2018, 65(3).
- [3] Zheng, X., Chloroplasti biosynthesis of melatonin and its involvement in protection of plants from salt stress, *Scientific Reports*. 2017, 7, 41236.