Extraction of polar compounds from groundwater by comparing SPE and evaporation techniques followed by HRMS DIA

acquisition

Francesc Labad¹, Nicola Montemurro¹, Marc Teixidó² Sandra Pérez¹

¹Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26 08014 Barcelona, Spain ²Dept. of Hydrogeoscience, IDAEA-CSIC, Jordi Girona 18-26 08014 Barcelona, Spain

SEVERO OCHOA

Evap.

Recons.

EXCELENCIA

Background

- The exponentially population growth have led to an overexploitation of drinking water. Thus, new strategies for obtaining drinking water have to be employed.
- Groundwater might meet the necessary conditions. However several organic pollutants could reach it by storm runoff, sewer leaks and infiltration from soil.

The Challenge

- The polar affinity between water and polar contaminants makes obtaining clean extracts difficult.
- Here, 35 polar compounds (logP < 0) were analyzed after selecting the extraction method (SPE or Evaporation) providing higher recoveries results.

taking in consideration its performance (recoveries),/ but also the time required and the total cost.

Procedures Elution **1.S.** spiking 500mL H_2O 200 mg HLB 150 mg PPL 100 mg WCX 100 mg WAX 500 mg activated C Evaporation spiking 10 mL H_2O Instrumentation Thermo Scientific Q-Exactive

HR-MSMS Analysis

ORBITRAP Acquisition Method: Full-MS + DIA with retention time micro-windows

Recons.

Data analysis Qualitative and quantitative analysis was performed using Thermo TraceFinder Software 5.1

NEXT STEPS

- Barcelona samples will be analyzed using the validated method in order to quantify the polar compounds studied.
- A suspect-screening will be performed to search for metabolites.
- Method will be exposed to an extension of contaminants of study.

ACKNOWLEDGEMENTS

- This study has been financially supported by the UrbanWat (JPI-JC-2018_16) and INWAT (PCI2019-103736) projects.
- This work was supported by the Spanish Ministry of Science and Innovation and the IDAEA-CSIC, a Centre of Excellence Severo Ochoa (Project CEX2018-000794-S-19-2).

