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INTRODUCTION

Sewage water provides a huge amount of information about the inhabitants of a region. Although sewage water has been used extensively in
studies of small molecules e.g pharmaceuticals or illegal drugs, recently has also been used as a representative sampling source of protein
biomarkers!. The large amount of information in these proteomics studies poses a difficulty in the characterization and quantification of
biomarkers in sewage water samples. In this work, the Regions of Interest-Multivariate Curve Resolution (ROIMCR)? procedure, a recently
proposed proteomic® tool, combined with Partial Least Squares-Discriminant Analysis (PLS-DA)* is proposed for the analysis of samples in
environmental proteomic studies.
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ﬁs a result of the ROIMCR analysis,\

181 ‘pure’ components were
obtained, achieving the explanation
of 96.86% of the data variance . Most
of these components can be
associated with peptide signals. To
assess the quality of these results the
heights of the elution profiles of each

Qmponents were analyzed. /
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/The 181 pure components from the\
ROIMCR analysis were studied using
PLS-DA to evaluate which were the
components responsibles of the
differenciation among sampling times.
Finally 41 of these components were

kselected. /
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This table shows the different proteins represented by the peptides selected as the main responsibles of
the observed differences among samples collected at different times. The last 3 columns represent the
number of peptides at each sampling time. This proteins are representatives of a large variety of species
e.g human, mouse or bacterial species among others.

Proteins Protein name Organism name Time 1 Time 2 Time 5
P35908 Keratin, type Il cytoskeletal 2 epidermal Homo sapiens 7 10 5
QolIFZ6 Keratin, type Il cytoskeletal 1b Mus musculus 7 9 5
P04264 Keratin, type Il cytoskeletal 1 Homo sapiens 12 17 6
Q981J9 60 kDa chaperonin 5 Mesorhizobium japonicum 1 1 1
B5YJN3 60 kDa chaperonin Thermodesulfovibrio yellowstonii 1 1 1
A1K436 60 kDa chaperonin 1 Azoarcus sp. 1 1 1
Q5P7G2 60 kDa chaperonin Aromatoleum aromaticum 1 1 1
A4G837 60 kDa chaperonin Herminiimonas arsenicoxydans 1 1 1
Q1H4F2 60 kDa chaperonin Methylobacillus flagellatus 1 1 1
A4SZV4 60 kDa chaperonin Polynucleobacter asymbioticus 1 1 1
Q3A0V2 60 kDa chaperonin Pelobacter carbinolicus 1 1 1
P13645 Keratin, type | cytoskeletal 10 Homo sapiens 1 9 2
P04259 Keratin, type Il cytoskeletal 6B Homo sapiens 2 4 0
A8EV70 ATP synthase subunit beta Arcobacter butzleri 0 1 0
Q99895 Chymotrypsin-C Homo sapiens 0 6 0
P01876 Immunoglobulin heavy constant alpha 1 Homo sapiens 0 7 2
Q6FF97 Elongation factor Tu Acinetobacter baylyi 0 4 0
A3M1F6 Elongation factor Tu Acinetobacter baumannii 0 4 0
P09093 Chymotrypsin-like elastase family member 3A Homo sapiens 0 14 0
ASFLS1 ATP synthase subunit beta Flavobacterium johnsoniae 0 1 0
A1ALL7 ATP synthase subunit beta 1 Pelobacter propionicus 0 1 0
Q82XP8 ATP synthase subunit beta Nitrosomonas europaea 0 1 0
Q9Y6R7 IgGFc-binding protein Homo sapiens 0 1 0
Q14533 Keratin, type Il cuticular Hb1 Homo sapiens 0 0 1
P78385 Keratin, type Il cuticular Hb3 Homo sapiens 0 0 1
P78386 Keratin, type Il cuticular HbS Homo sapiens 0 0 1
043790 Keratin, type Il cuticular Hb6 Homo sapiens 0 0 1
ASA6M5 Keratin, type | cuticular Hal Pan troglodytes 0 0 1
076009 Keratin, type | cuticular Ha3-| Homo sapiens 0 0 1

CONCLUSIONS

N\ (

v' Data compression and analysis performed by ROIMCR allows the reduction of the amount of

data without losing the accuracy of the proteomic signal of each sample

v' The PLS-DA analysis allows the selection of those pure components with the peptide signals

which represent the variability among sampling times

v' Further work is pursued at present using LC-HRMS/MS analysis of the target MS signals

selected by the combination of the ROIMCR and PLSDA procedures.
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