An operational direct model to accurately determine crop evapotranspiration of crops cultivated in the Mediterranean region

Gianfranco Rana¹, Nader Katerji² and Rossana Monica Ferrara¹

¹ CRA – Research Unit for Agriculture in Dry Environments, Bari, Italy
² INRA - Unité Mixte de Recherche «Environnement et Grandes Cultures» Thiverval-Grignon, France

Abstract. Two methods can be considered as able to determine $E$ for well irrigated crops. The first method is indirect (the “crop coefficient approach”). It is based on the knowledge of a crop coefficient, $K_c$, and an estimation of the reference evapotranspiration of grass $E_0$. The second method directly calculates the $E$ of a crop, without a step through a reference surface. It similarly applies a Penman-Monteith type formula. However, in this method the canopy resistance, $r_c$, is specific for each species, it is not constant but variable as a function of climatic characteristics of the atmosphere below the top of the boundary layer above the crop. This study proposes to explore and to test a more operational version of the direct model. In this version, the canopy resistance $r_c$ will be considered as constant but specific for each crop. The performances of this method are evaluated with respect to the above cited direct and indirect methods, by means of experimental validation carried out on 3 crops having contrasted height. The best performance was given by the original version of the direct model, both at daily and hourly scales. The operational version of the direct model gave acceptable results only for grass. The indirect model gave the worst results both at daily and hourly scales. The practical use of this new version is discussed in the conclusions.

Keywords. Canopy resistance – Height crop – Penman-Monteith formulation – Vapour pressure deficit – Aerodynamic resistance.

Un modèle opérationnel direct pour déterminer correctement l’évapotranspiration des cultures en Région méditerranéenne

Résumé. Il existe deux méthodes pour déterminer correctement l’$E$ des cultures irriguées. La première méthode est indirecte (l’« approche coefficient cultural »). Elle repose sur la connaissance d’un coefficient cultural, $K_c$, et sur l’évaluation de l’évapotranspiration de référence du gazon $E_0$. La seconde méthode calcule directement l’$E$ d’une culture, sans considérer la surface de référence. Elle applique la formule du type Penman-Monteith. Cependant, dans cette méthode, la résistance du feuillage, $r_c$, est spécifique pour chaque espèce ; elle n’est pas constante mais varie en fonction des caractéristiques climatiques de l’atmosphère sous la partie supérieure de la couche limite au-dessus de la culture. Le but de la présente étude est d’explorer et de tester une version plus opérationnelle du modèle direct. Dans cette version, la résistance du feuillage, $r_c$, est considérée comme constante, mais spécifique pour chaque culture. La performance de cette méthode est évaluée par rapport aux méthodes directe et indirecte qu’on vient de citer, à travers la validation expérimentale sur trois cultures ayant une différente hauteur. La meilleure performance est obtenue par la version originale du modèle directe à l’échelle journalière et horaire. La version opérationnelle du modèle direct a donné des résultats acceptables seulement pour le gazon. Le modèle indirect a donné les résultats les plus mauvais à l’échelle journalière et horaire. Enfin, l’application pratique de cette nouvelle version est illustrée dans les conclusions.


I – Introduction

The evapotranspiration ($E$) of an irrigated crop can be calculated directly by using the Penman-Monteith formula with a specific value of the crop resistance and the meteorological variables

Options Méditerranéennes, A n° 88, 2009 - Technological Perspectives for Rational Use of Water Resources in the Mediterranean Region
measured above the canopy. In practice, the use of this formulation needs, for each species, specific modelling of the canopy resistance \( (r_c) \) in relation to the environmental variables (Katerji and Perrier, 1983; Katerji and Rana, 2008). The direct calculation of \( E \), compared to micrometeorological methods and weighing lysimeter, is considered the best way to estimate correctly the actual \( E \) (see the review by Katerji and Rana, 2008). Nevertheless, this way to calculate \( E \) has been considered too complex to be used in practice, since it needs the modelling of the canopy resistance \( r_c \) specific for each cropped surface. At the moment, this constraint, together with the need of determining the climatic variables above the given crop, leads to consider this direct method as not much operational.

From the application point of view, the calculation of the crop \( E \) is usually made by the formulation by Allen et al. (1998). It is an indirect calculation; in fact \( E \) is determined by the following relationship:

\[
E = K_c E_0
\]

(1)

In this formulation, \( E_0 \) is the reference evapotranspiration and \( K_c \) is the crop coefficient.

Following a critical revision, the more recent FAO no. 56 paper (Allen et al., 1998) redefined the concept of \( E_0 \) and adopted the Penman-Monteith equation adapted to a grass crop. Anyway, the authors simplified the procedure to calculate the resistance \( r_c \) for the grass. In fact, this was considered constant in all climatic conditions and takes a fixed value in the Penman-Monteith formula. The accuracy of the \( E \) values determined by the Eq. (1) depends on two factors. Firstly, on the accuracy of the determination of \( E_0 \) as carried out by the users in different geographical sites; then, on the accuracy of the \( K_c \) values. These values were given by Allen et al. (1998) for three stages of crop growth cycle (initial, middle and end) for the main cultivated crops.

The hypothesis of a constant resistance \( r_c \) in the determination of \( E_0 \) for the grass could be a possible source of error. However, some studies showed that this hypothesis gave acceptable estimation of \( E_0 \) in different regions of the world (Allen et al., 1994a, 1994b). Other studies, mainly carried out in semi-arid and arid regions, showed opposite results, i.e. that the previously mentioned hypothesis underestimated, except for a few exceptions the values of \( E_0 \) as measured by lysimeters (see the results obtained by Steduto et al. 1996 in Morocco). The under-estimation ranged between 2 and 18% (Rana et al., 1994; Steduto et al., 1996; Ventura et al., 1999; Lecina et al., 2003; Pereira, 2005). Moreover, in humid regions, de Medeiros et al., (2006) observed that the hypothesis of a constant \( r_c \) leads to a 13.4% over-estimation of the \( E_0 \) measured by lysimeter. Anyway, since the experimental error of the direct measurement of \( E_0 \) by the lysimeter is about 15% (Katerji and Rana, 2008), the performance of this method seems to be reasonable. Therefore, the approach proposed by Allen et al. (1998) merits the attention of researchers.

The second source of possible error concerns the values of \( K_c \). Actually, these values showed more or less important differences with respect to the experimentally determined values of the \( E / E_0 \) relationship. Many papers can be found on this subject in the scientific literature. If we consider only the more recent literature (Testi et al., 2004; Parkes et al., 2005; Rana et al., 2005; Lovelli et al., 2005; Amayreh and Al-Abed, 2005; Kar and Verma, 2005; Vu et al., 2005; de Medeiros et al. 2006), it is possible to find differences of ±40% between the \( K_c \) values reported by Allen et al. (1998) and the values experimentally obtained, especially during the middle growth cycle. These big differences are mainly due to the complexity of the coefficient \( K_c \) which actually integrates several functions (Testi et al., 2004): aerodynamic factors linked to the height of the crop, biological factors linked to the growth and senescence of the leaves, physical factors linked to the evaporation from the soil, physiological factors linked to the response of the stomata to the air vapour pressure deficit and agronomical factors linked to the crop management (distance between rows, using mulch, irrigation system, etc.). For this reason, Allen et al., (1998) recommended that the evaluation of \( K_c \) values in local climatic conditions by observed data using lysimeters is necessary. Nevertheless, the simple local determination of \( K_c \) is not enough if general values of
Kc are required. Therefore, it is necessary to search for the relationships between Kc and more or less complex parameters, such as the surface area of the leaves, the humidity of the soil surface and the 3D energy balance (Testi et al., 2004; Orgaz et al., 2005; Lovelli et al., 2005; Kar and Verma, 2005; Luquel et al., 2005).

Following such a review of the indirect calculation of E, some researchers underlined (Testi et al., 2004) or experimentally demonstrated (Rana et al., 2005) the interest in the direct evaluation of E. This evaluation used the one-step approach as opposed to the two-step approach of the Eq. (1). Since it is based on a lower number of computation steps and on a lower number of error sources, the one-step approach can provide a more accurate estimation of E.

In the present paper, the original model proposed by Katerji and Perrier (1983), based on the hypothesis of a variable canopy resistance, will be recalled. In the following, we propose a second more operational version of the model, in which the hypothesis of a constant r was adopted for well watered crops, according to the approach proposed by Allen et al. (1998). To our knowledge, this is the first attempt to make the direct model for calculation the actual evapotranspiration more operational. This new version, in contrast with the original one, does not need the modelling of the canopy resistance. The comparison between measured and simulated E values with the above mentioned model will be carried out in a semi-arid region, at two time scales (hour and day), for 3 irrigated crops having contrasted height. This comparison will be evaluated with respect to another one, for the same crops at daily scale, between measured and calculated E using the standard FAO 56 method. In the following, we demonstrate that the studied crops showed a higher or lower sensitivity to the vapour pressure deficit of the air, which strongly characterised the climate of the semi-arid regions (Rana and Katerji, 1998).

In conclusion, a proposal for simplifying the direct model is given for application in the Mediterranean region.

II – Materials and methods

1. The direct model

The analysis of the crop actual evapotranspiration was made on the basis of the Penman-Monteith model. In this model, which is applicable to the hourly time scale, E is written as:

$$E = \frac{1}{\lambda} \frac{A + \rho c_p D / r_a}{\Delta + \gamma (1 + r_c / r_a)}$$

where A=Rn-G is the available energy (W m⁻²), ρ is the air density (kg m⁻³), Δ is the slope of the saturation pressure deficit versus temperature function (kPa C⁻¹), γ is the psychrometric constant (kPa C⁻¹), cp is the specific heat of moist air (J kg⁻¹ C⁻¹), D the vapour pressure deficit of the air (kPa), rc is the bulk canopy resistance (s m⁻¹) and ra is the aerodynamic resistance (s m⁻¹), λ is the latent heat of evaporation (J kg⁻¹). The resistance ra was calculated between the top of the crop and a reference point z sited in the boundary layer above the canopy, following Perrier (1975), as:

$$r_a = \frac{\ln \frac{z}{z_0} - \ln \frac{z - d}{h_c - d}}{k^2 w_z}$$
where \( d \) (m), the zero plane displacement, is estimated by \( d=0.67 \) hc, with hc mean height of the crop (m); \( k \) is the von Kármán constant, \( u_z \) is the wind speed (m s\(^{-1}\)) at the reference point \( z \) above the canopy, \( z_0 \) (m) the roughness length estimated by \( z_0=0.1hc \).

The hourly variation of \( r_c \) can be simulated starting from a relationship, which takes into account the associated effects of solar radiation, air vapour pressure deficit and wind speed. Katerji and Perrier (1983) proposed to simulate the resistance \( r_c \) by the following relation:

\[
\frac{r_c}{r_a} = a \frac{r^*}{r_a} + b
\]  

(4)

where \( a \) and \( b \) are empirical calibration coefficients which require experimental determination. \( r^* \) (s m\(^{-1}\)) is written as:

\[
r^* = \frac{\Delta + \gamma \rho c_p D}{\Delta \gamma A}
\]  

(5)

It can be considered as a “climatic” resistance, because it depends only on weather variables.

This model has been used to calculate \( E \) for different species: (see review in Katerji and Rana, 2008) Therefore, from the above analysis, two models of direct \( E \) calculation are tested in this work: in the first version (model 1), by adopting the hypothesis of a variable \( r_c \) during the day by combination of Eqs. (2) and (4). It can be written as:

\[
E = \frac{1}{\lambda} \frac{\Delta A + \rho c_p D}{r_a} \left( \frac{1 + \frac{r_c}{r_a}}{\Delta + \gamma \left( a \frac{r^*}{r_a} + b \right)} \right)
\]  

(6)

In the second more operational version (model 2), by adopting the hypothesis of \( r_c \) constant during the day. In this case, the hourly \( E \) can be written as:

\[
E = \frac{1}{\lambda} \frac{\Delta A + \rho c_p D}{r_a} \left( 1 + \frac{r_c}{r_a} \right)
\]  

(7)

The sensitivity analysis of the Penman-Monteith model is the analysis, at hourly scale, of the weight of each input variable \( A, D, r_c \) and \( r_a \) on the output variable \( E \). Following the studies of the sensitivity made in the last decades, the weight of the resistance \( r_c \) depends on two factors:

- the height of the crops in the formulation of the aerodynamic resistance \( r_a \) (Beven, 1979). This decreases when the height of the crop increases (see Eq. (3));
- the soil water conditions of the crops (Rana and Katerji, 1998) which determines the values of \( r_c \), for a given micrometeorological condition.

Starting from a sensitivity analysis carried out on three crops (grass, grain sorghum, sweet sorghum) with different increasing heights of 0.1, 1 and 3 m respectively, Rana and Katerji (1998) gave the weight of each input variable on the calculated \( E \). In fact, from this paper it can be
argued that, in the case of well watered crops, rc is responsible of 10-20% (case of grass) and 40-50% (case of grain and sweet sorghum) of the E variation. In the case of water stress conditions, the variable rc is a dominant parameter in the variation of E, since it explains from 70% (grain sorghum) to 90% (sweet sorghum) of the E variation. In well watered conditions, the sensitivity of E to the input variables A and D varies also as a function of the crop height. The variable A explains 60-70% of the hourly E in the grass crop. Furthermore, the variable D explains 50% (grain sorghum) and 65% (sweet sorghum) of the hourly E. This analysis underlines a very important fact: in the case of well-watered crops the same error in the determination of rc can give errors in the estimation of E which increases as the height of the crop increases. Therefore, the different models for the estimation of E have to be validated on a large range of crops with variable height in order to define their suitability.

The two versions of the direct model can be applied both at hourly and daily scales.

2. The indirect model

In this case, the actual evapotranspiration was estimated by the Eq. (1). The reference evapotranspiration E0 was estimated by the following equation, as recommended by Allen et al., (1998):

\[
E_0 = \frac{0.408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 D}{\Delta + \gamma (1 + 0.34 u_2)}
\]  

(7)

Where the energetic terms Rn, G and E0 are in (MJ m-2 day-1); the other variables T (°C) and u2 (m s-1) are the air temperature and the wind speed measured at 2 m, respectively. The net radiation Rn and the soil heat flux G in this case were measured.

The coefficient Kc, for each crop, was taken for 4 growth periods from the same paper, following the “single crop coefficient” approach. The calculation of E using the standard FAO 56 method can be made only at daily time scale.

3. The site and the crops

This study was carried at a site of Southern Italy (Rutigliano, Bari, 41°0’ N, 17°54’ E, 122 m a.s.l.). The climate in Rutigliano is characterised by hot dry summers, with maximum air temperature sometimes higher than 40 °C and minimum relative air humidity often less than 20%. Mean annual rainfall is 500 mm, almost exclusively concentrated in spring and autumn.

The experiments were carried out on 3 well watered crops: grass, grain and sweet sorghum. These are annual crops (except grass) cultivated during the summer. These crops are different in height in the range of 0.1 – 3 m. For grain sorghum, the experimental period concerned only the phase when the crop completely covers the soil (LAI>2); for sweet sorghum the experimental period also included the installation phase (LAI≤2). Therefore, the problem of partially covering crops is taken into account in this study.

For grass, measurements were taken in a field of grass (Lolium perenne L., var. Barvestra); it completely covered the soil and was from 0.07 to 0.15 m high. The meadow was well irrigated so that the soil water content was always near field capacity. Measurements were taken in 1994 and 1995. Actual E was measured by weighing lysimeter. Details of the experiment can be found in Rana et al. (1994).

The grain sorghum (Sorghum bicolor L. Moench, cv. Aralba) was sown on 2 May 1991, with a plant density at harvest of 20 plants/m², in a plot of 2 ha (200 x 100 m), the distance between rows
being 0.5 m. By means of drip irrigation, water was uniformly distributed all over the field. The actual E was measured by energy balance/Bowen ratio method. Details of the experiment can be found in Rana et al. (1997a).

The sweet sorghum (Sorghum vulgare L., cv. Saccharatum) field has a surface of about 4 ha, with a density of about 12 plants m-2, the distance between adjacent rows was 0.6 m and the mean distance between the plants on a row was 0.12 m; the fetch from the field edge to the micrometeorological instrumentation was about 200 m in the direction of the predominant wind (NNW). The crop was maintained under well watered conditions. The actual E was measured by energy balance/Bowen ratio method. Details about the experiment can be found in Rana et al. (2001).

III – Results and discussion

1. Calibration of the models

The calibration of the models was carried out using the hourly data of rc, determined during two clear days casually chosen during the experiment period. The calculation of rc was carried out by introducing the hourly data of the measured E in the Eq. (2). Figure 1 shows the hourly values of rc for the 3 crops. In general, the resistance rc showed a standard evolution during the day. It decreased from sunrise with increasing solar radiation, to reach the minimum value around 8 – 9:00 a.m.. When the solar radiation decreased again in the afternoon around 3-4:00 p.m. then the rc values increased again. Between 9:00 a.m. and 3:00 p.m., the canopy resistance varied very little in the grass crop, which is a low crop having a very high aerodynamic resistance ra. On the other hand, rc in the sweet sorghum crop, characterised by a great height and a small ra, varied significantly from 12:00 to 3:00 p.m. This was interpreted as the response of the stomata to the air vapour pressure deficit (Ferreira and Katerji, 1992). The grain sorghum showed an intermediate situation between the grass and the sweet sorghum.

![Figure 1. The measured crop resistance rc for two clear days, for the three studied crops, together with mean daily values.](image)

The calibration of the direct model needs the determination, for each species and during the two days casually chosen for the calibration, the relation rc/ra as a function of r*/ra. Figure 2 presents, as an example, the relation found for grass. Table 1 also presents all the relations for the 3 studied crops. The mean values of the hourly rc found in the present study for the grass is about 50 s m-1 and it is in the range of values found in the literature for this species. These values ranged between 30 and 70 s m-1 (Wright et al., 2002; Ventura et al., 1999; Lecina et al., 2003).

The hypothesis followed by Allen et al. 1998 that rc should be constant in the different climatic
conditions is not verified in practice. In the case of the other annual crops, the mean values found in the present study (between 65 and 130 s m⁻¹) are generally greater than those found in the literature. From the current analysis it is suggested that the air vapour pressure deficit must play a major role in the environments of the region where this work was carried out, particularly for tall crops, like the sweet sorghum, compared to grass.

![Graph](image)

**Figure 2.** Relationship between the ratio rc/ra and r*/ra, at hourly scale, for the grass.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Experimental Period</th>
<th>Height (m)</th>
<th>LAI</th>
<th>E measurement Method</th>
<th>a</th>
<th>B</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>1/06 – 21/09</td>
<td>0.07-0.15</td>
<td>2 – 2.5</td>
<td>Weighing lysimeter</td>
<td>0.16</td>
<td>0</td>
<td>0.58</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td>9/07 – 27/08</td>
<td>1</td>
<td>3.8 - 4.2</td>
<td>Bowen ratio</td>
<td>0.54</td>
<td>0.61</td>
<td>0.43</td>
</tr>
<tr>
<td>Sweet sorghum</td>
<td>20/04 – 18/10</td>
<td>1.5 – 2.8</td>
<td>1 – 6.4</td>
<td>Bowen ratio</td>
<td>0.845</td>
<td>1</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Validation of the models

Figure 3 presents the comparison between hourly values of E simulated by model 1 and measured E, for the 3 studied crops. Here, as for in the other linear regressions, the intercept is fixed to 0 if it is not significantly different from 0.

![Graph](image)

**Figure 3.** Comparison between measured and calculated evapotranspiration by the model 1 at hourly scale, for the three studied crops.

In all the cases, model 1 works pretty well. Therefore, the hypothesis of a variable resistance rc taken into account in the model 1 satisfactorily agrees with the hourly E measured in all the studied situations. Figure 4 shows, for the same crops, the comparison between hourly values of E simulated by model 2 and measured E. In the grass crop, the observed correlation is good, but
the slope of the linear regression is around 0.85 instead of 0.99 for the case of model 1. For the other 2 studied crops, model 2 generally overestimates the actual $E$: furthermore, the slopes and the correlation coefficients are not satisfactory. Since the experimental error in the determination of the hourly $E$ is about 15% (Katerji and Rana, 2008), the hypothesis in model 2 of a constant canopy resistance, locally determined, can be considered acceptable only in the case of the grass crop.

**MODEL 2**

**Grass**

$ET_{mod} = 0.85 \times ET_{meas} + 0.015$, $r^2 = 0.87$

**Grain sorghum**

$ET_{mod} = 0.49 \times ET_{meas} + 0.24$, $r^2 = 0.41$

**Sweet sorghum**

$ET_{mod} = 0.76 \times ET_{meas} + 0.22$, $r^2 = 0.26$

Figure 4. Comparison between measured and calculated evapotranspiration by model 2 at hourly scale, for the three studied crops.

Daily scale

The daily values $E$ estimated by models 1 and 2 have been calculated by the sum of the hourly values simulated by the same models, from 8:00 a.m. to 6:00 p.m., for each day.

**MODEL 1**

**Grass**

$ET_{mod} = 1.01 \times ET_{meas}$, $r^2 = 0.97$

**Grain sorghum**

$ET_{mod} = 0.85 \times ET_{meas}$, $r^2 = 0.73$

**Sweet sorghum**

$ET_{mod} = 1.04 \times ET_{meas}$, $r^2 = 0.94$

Figure 5. Comparison between measured and calculated evapotranspiration by model 1 at daily scale, for the three studies crops.

Figure 5 presents the comparison between $E$ daily values simulated by model 1 and measured in the same period, for the studied crops. In summary, the calculation of the daily $E$ made by model 1 gave acceptable results. Figure 6 shows the comparison between daily $E$ measured and simulated by model 2. In this case the daily simulation of $E$ is satisfactory only for grass. For the other studied species, the calculation is not acceptable. Figure 7 shows the comparison between daily $E$ measured and calculated by the standard FAO 56 method. In the grass crop, the observed correlation is good, but the slope of the linear regression is around 0.78 instead of 0.99 for the case of model 1. In the case of sweet sorghum, the slope of the regression is correct, but the coefficients of correlation are low ($R^2 = 0.53$). For the other crop, the slopes and the correlation coefficients are not satisfactory.
IV – Conclusions

From many works in the scientific literature, the calculation of the crop evapotranspiration by direct models seems to be more accurate than the indirect models in the calculation of the crop water requirements. The intermediate calculations of $E_0$ and $K_c$ needed for the indirect calculations generates significant errors, as shown in the bibliographic review presented in the introduction of this paper and the results presented in Figure 6.

Two approaches, here presented, are possible for calculating directly the $E$:

In the first one (model 1) the canopy resistance has been modelled as a function of three climatic variables. We checked the performances of this model for 3 crops grown in a semi-arid region, where the sensitivity of the crops to the air vapour pressure deficit is greater than in the case of humid and semi-humid environments. The results are satisfactory both at hourly and daily scales for all the studied crops. Another important advantage of the direct model 1 is the possibility to extend the modelling of $E$ to other sites and places (Rana et al., 1997b; 2001). The only difficulty of this approach is due to the necessity of modelling of the canopy resistance $r_c$.

The second more operational approach (model 2) is based on the assumption that the canopy resistance of every crop in well-watered conditions can be considered constant. The experimental verification showed that the $E$ is much less accurate than using model 1. The model 2 particularly failed in certain days, when the canopy resistance, $r_c$, varied significantly during the day, mainly
in the case of tall crops. Nevertheless, it gave acceptable results in the case of low crops: i.e. the grass (at hourly and daily sales). This can be due to two main reasons:

low crops have a large aerodynamic resistance \( r_a \). So these have a weak stomatal response to the variations of the air vapour pressure deficit. In this case, local calibration of the mean daily resistance \( r_c \) represents an acceptable value of the single hourly resistance.

In general, for low crops, the weight of the canopy resistance \( r_c \) is low in the calculation of \( E \). Therefore, a large error in the determination of \( r_c \) has a small impact in the calculation of \( E \).

Nevertheless, the necessity of the local determination of \( r_c \) deprives this approach of its main advantage. So we think that it is more interesting to model the resistance \( r_c \) as for model 1. Moreover, this modelling does not need the determination of supplementary parameters or input variables. On the contrary, it increases the accuracy of the calculated \( E \) also in the case of tall crops. However, the direct models need the measurement of weather variables above the crop, not easily feasible in routine. Thus, it is surely interesting to study another further version of the model which needs the determination of the weather variables collected in a standard agro-meteorological station. This last path of research, permitting to obtain an analogous more operational version of the direct model, has been recently studied by Rana and Katerji (2009). Actually, these authors showed that it is possible to determine \( E \) with high accuracy, at least at daily scale, on a large range of crops, simply using climatic variables collected in a standard agro-meteorological station.

References


