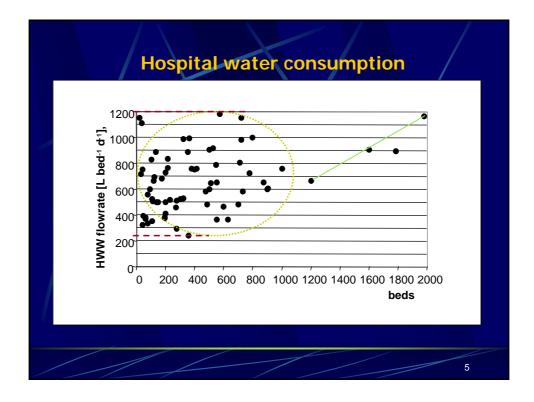
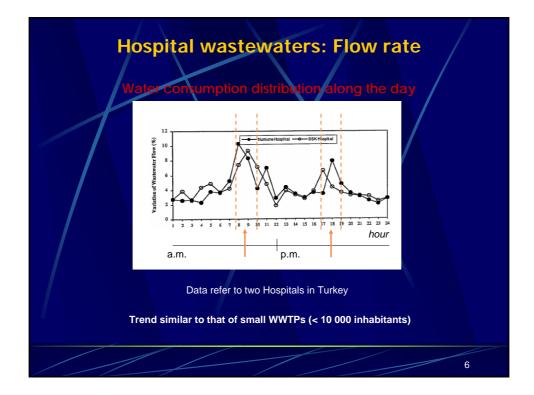
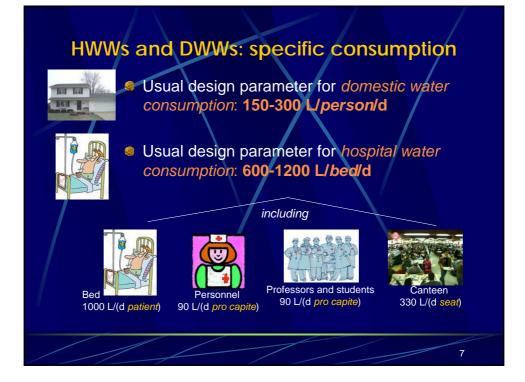


- Considered of the same pollutant load of domestic WWs.
- Discharged in a public sewage, according to the current law disposal, conveyed and treated at a municipal WWTP.
- Possible) required treatment before immission in public sewage: mild disinfection.

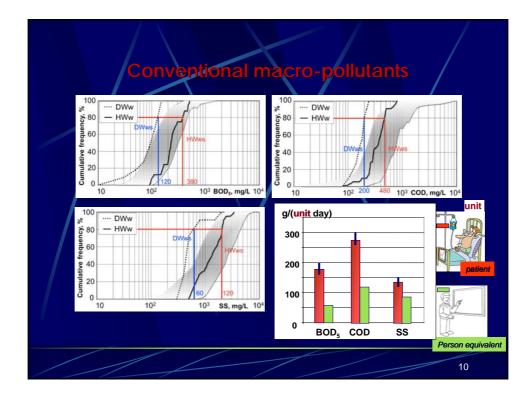

In Switzerland, HWWs are considered of the same pollutant load of Industrial WWs

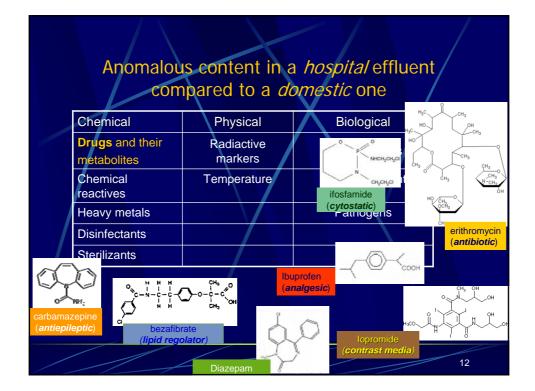

What is the best strategies in managing HWWs?

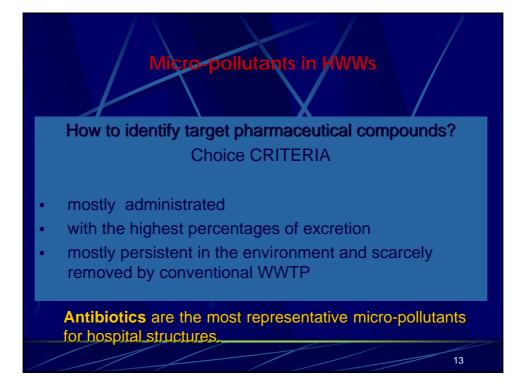

3

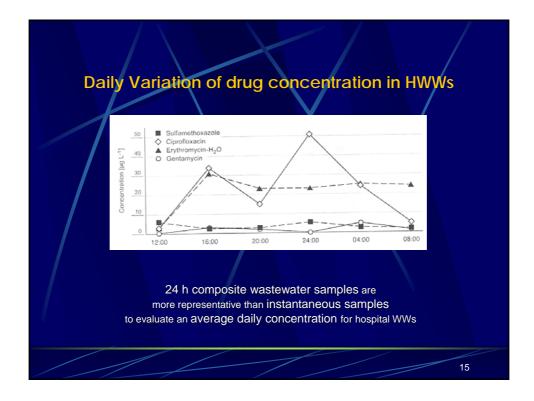
Services	Origin	Compa	rable to
Services	Origin	DWWs	IWWs
	Kitchen	X	
General	Laundry (???)	X	
services	Air conditioning		X
	Dry treatment of polluted air		X
	Laboratories		X
Diagnosis	Sanitary departments		X
services	Radiological departments		X
	Transfusion centres	?	?
	General medecine	?	?
Wards	Surgery	?	?
valus	Specialities	?	?
	Haemodialysis	?	?

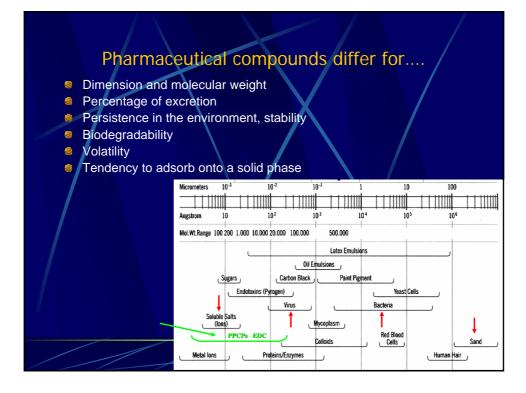

2

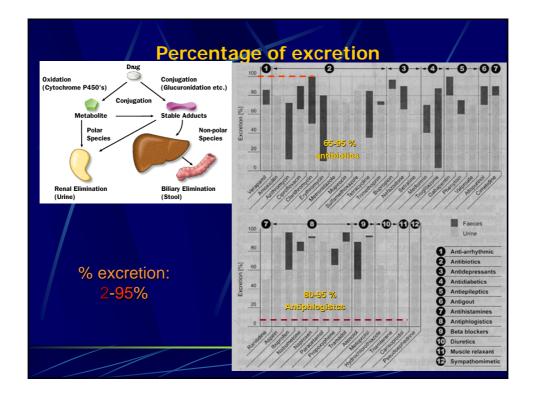


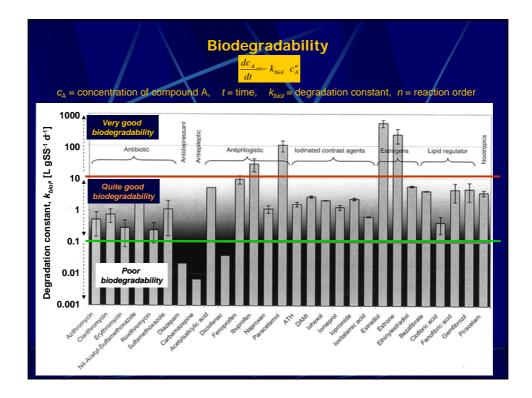



	Pollutants
<i>Conventional</i> pollutants	SS, BOD, COD, COT, ammonia, nitrates, nitrites, total N, TKN, organic N, phosphorus, bacteria, viruses
<i>Non conventional</i> pollutants	recalcitrant organic substances, VOCs, surfactants, heavy metals, total dissolved solids
<i>Emerging</i> contaminants (Ecs)	Pharmaceuticals and Personal Care Products (PPCPs) antibiotics for humans and animals Endocrine Disrupter Compounds (EDCs)
regulation depending on re monitoring data regarding Ecs do not need to be pers	sistent in the environment to cause negative effects tion/removal rate can be compensated for by their
They include: PPCPs, EDC	Cs, illicit drugs, gasoline additive

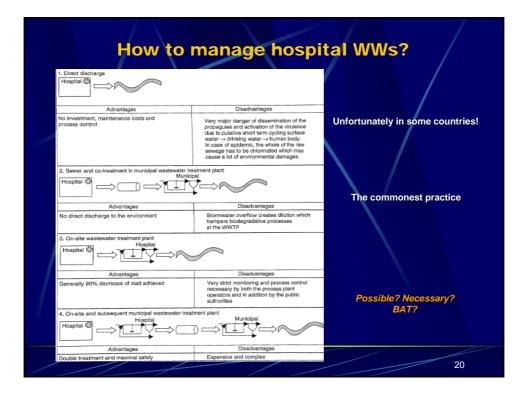


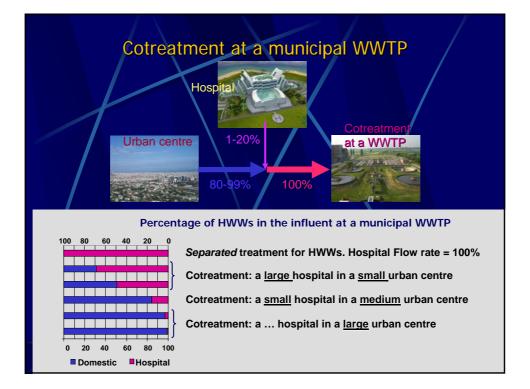

Ν	Macro-pollutants	tunicali	ando of c	oncontration	
,	viacro-poliutants	. typicana	ange or c		
	Parameter	HWws	DWws	HWws ? DWws	
	SS, mg/L	10-900	30-300	>	
	BOD ₅ , mg/L	100-1600	10-130	>	
	COD, mg/L	280-9000	90-500	>	
	COD/BOD ₅	1.4-6.6	1.7-2.4	>	
	Total P, mg/L	3-8	8	~	
	NH ₃ , mg/L	10-55	30-40	~	
	Chorides, mg/L	80-188	50	>	
	Hg, μg/L	0.04-0.28	< 0.5	>	
	Total surfactants, mg/L	3-7.2	4-8	~	
	TC, MPN/100 mL	10 ⁶ – 10 ⁹	10 ⁷ – 10 ⁸	~	
	FC, MPN/100 mL	10 ³ – 10 ⁷	10 ⁶ – 10 ⁷	~	
	<i>E. coli</i> , MPN/100 mL	10 ³ – 10 ⁶	10 ⁶ – 10 ⁷	~	1

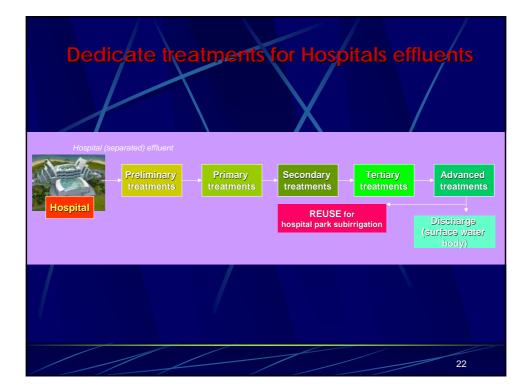




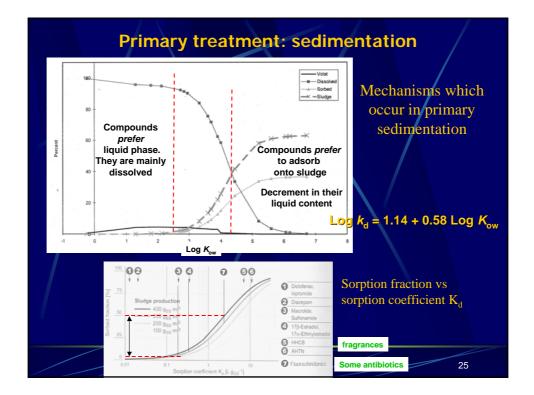
Their concentration range in HWWs and DWWs						
	Micro-pollutant	HWWs µ g/L	DWWs μ g/L			
Cytostatic	Ifosfamide	0.4-8	0.010-0.030			
	Single antibiotic	2-150	< detection limit - 50			
	Ofloxacin	5-40	0.1-1			
Antibiotic	Ciprofloxacin	17-125	0.2			
	Norfloxacin	2.6-7.0				
	Erythromycin	27	1.2			
	Sulfamethoxazole	4	< detection limit - 0.58			
Antiepileptic	Carbamazepine	0.5-2	1.2			
Analgesic	Paracetamol	5-1388	1.7 – 43			
Diclofenac		0.3 - 15	0.1 – 4			
Harmanaa	Estriol	0.18 - 0.79	0.054 - 0.24			
Hormones	Estrone	0.007 - 0.047	0.017 - 0.030			
	Estrogens	1 - 8	0.01 - 0.062			
Contrast media	Adsorbable Organic lodine	10 000	130			
		From l	iterature data 14			

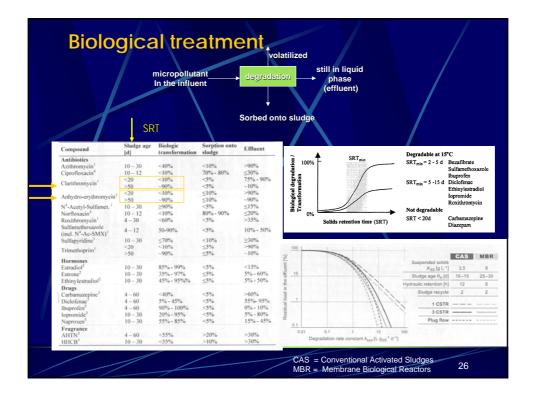


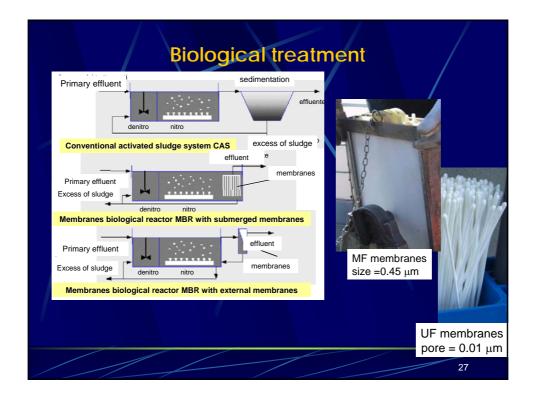


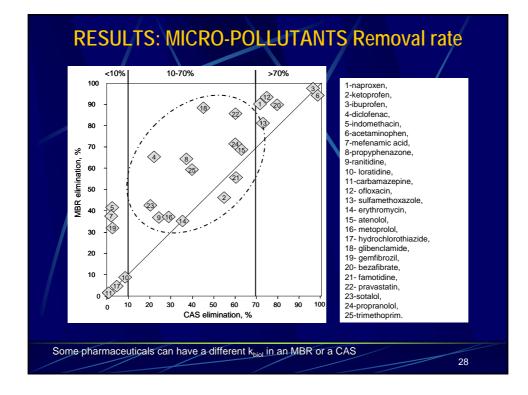


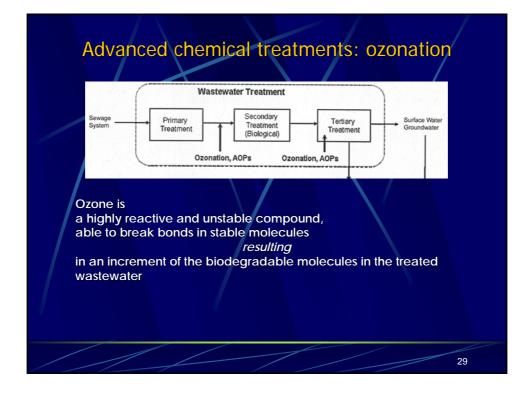
S		ow= water octanol pa		ption coe	
	Analytes	Use	MW (g/mol)	$Log K_{ow}$	Excellent
	Gemfibrozil Triclosan Estradiol Ibuprofen Progesterone Oxybenzone Ethynylestradiol Testosterone Naproxen Estrone Erythromycin-H ₂ O Diazepam Androstenedione Atrazine Dilarinin Carbamazepine Estriol DEET TCEP Trimethoprim Sulfamethoxazole	Anti-cholesterol Antibiotic Steroid Pain reliever Steroid Sunscreen Birth control Steroid Analgesic Steroid Antibiotic Anti-anxiety Steroid Herbicide Anti-i-anxiety Steroid Herbicide Steroid Insect repellent Fire retardant Antibiotic	250.2 289.6 272.2 206.1 314.2 228.1 206.2 288.2 230.1 270.4 733.9 284.8 286.2 215.1 252.3 236.3 288.4 191.3 285.5 290.1 253.1	4.77 4.76 4.01 3.97 3.87 3.87 3.67 3.32 3.13 3.06 2.82 2.75 2.61 2.45 2.45 2.45 2.45 2.18 1.44 0.91 0.89	adsorption $Log \kappa_{ow} = 4$ Good adsorption $Log \kappa_{ow} = 2.5$ Low adsorption
	Diclofenac Meprobamate Acetaminophen Pentoxifylline Caffeine Iopromide	Arthritis Anti-anxiety Analgesie Blood viscosity control Stimulant X-ray contrast media	318.1 218.3 151.2 278.1 194.2 790.9	0.70 0.70 0.46 0.29 -0.07 -2.1	19

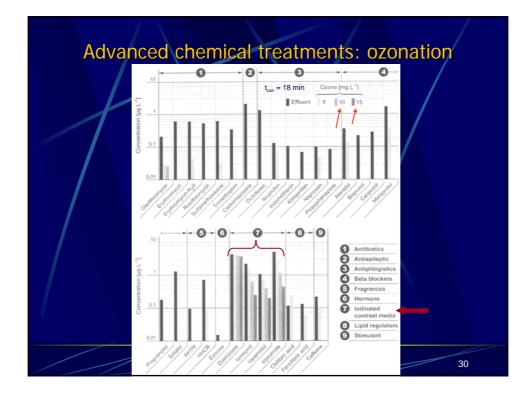

	Preliminary disinfection	(on site treatment)	
orgai disinf This n dhen expe	v hospital effluents, like in rav nic substances is present and ectant. hust be carefully considered hical used in this step, in orde ected) microrganisms remove following table guidelines for	I they can react with th in defining the right do r to achieve a significa al rate.	e of the
	Kind of wastewaters	Chlorine demand	
	Raw fresh domestic wastewaters	12-15 mg/L	
	Raw septic domestic wastewaters	15-40 mg/L	
	Primary effluent	12-16 mg/L	
	Septic tank effluent	30-45 mg/L	
	Nitrified filtered effluent	2-10 mg/L	
			23

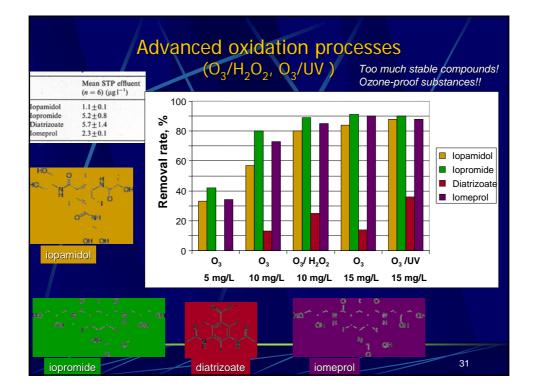

Preliminar	y disinfection	n (on sit	e treatment)
			1

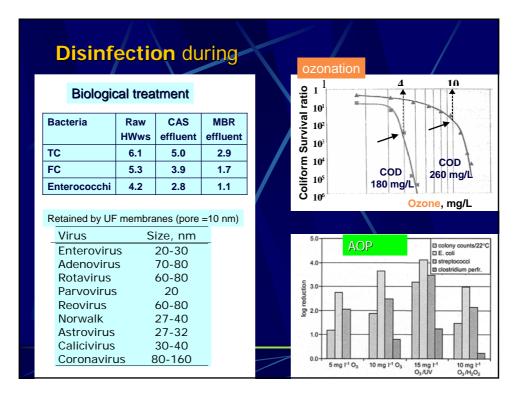

effluent from an infectious disease ward of a hospital in Milan, Italy
 10-15 mg ClO₂/L, t_{con} = 20 min

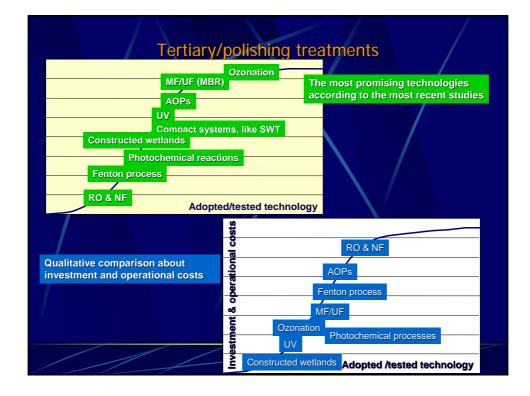

able to guarantee a high removal of bacteria and viruses (poliovirus 1) (Nardi et al., 1995)

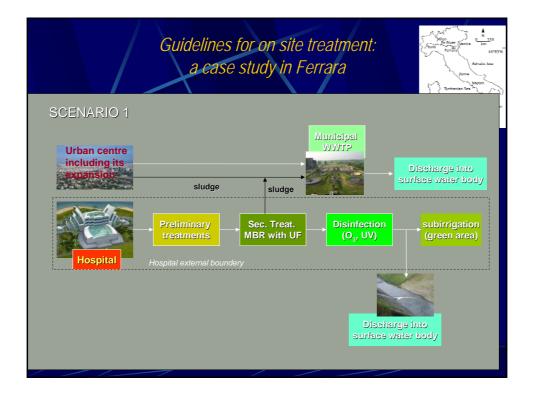

Sample	Chlorine demand	CIO ₂ mg/L	AOX mg Cl/L	Total coliform MPN/100 mL	Fecal coliform MPN/100 mL	Fecal strept. MPN/100 mL	Salmonelle	Coliphagi Col/100 mL
A	11.7	Strate States	2,4	2,4+106	400	4.3.105	assenti	<5
新新关系的新闻 的社		5	2,6	1.1.104	40	2,4•103	assenti	<5
and a less pair		10	2,7	1,1+104	<3	460	assenti	<5
		15	2,8	1.1.103	<3	4	assenti	<5
В	23,2	Participa - California	3,1	9,3+106	4,4•104	1,1+107	assenti	1,00280
P SHE A SHIEL S		5	3,4	1.1-106	9,3•103	1.5+104	assenti	8717
		10	3,5	4.3•103	4,3•103	1.1.104	assenti	1334
No. Polyna		15	3,5	9	<3	460	assenti	69
С	11.1	And Alley Transferra	0,2	2.3.106	4,0+105	2,4+107	assenti	322000
		5	0,3	4,6+104	4,6+104	2,4.107	assenti	4370
		10	0,3	9.3•10 ³	4,6+103	4.6+104	assenti	23
		15	0,4	240	93	1,1+104	assenti	<5
D	22.0	121 202 - 12 19 19 19 19 19 19 19 19 19 19 19 19 19	1,2	4.3•106	4.0+105	1,5+106	assenti	3450
		5	1,2	4,6+105	9.3•104	1,5+105	assenti	46
		10	1,3	2,4+104	400	2,4•104	assenti	<5
		15	1.3	1,1+103	9	1.1.103	assenti	<5

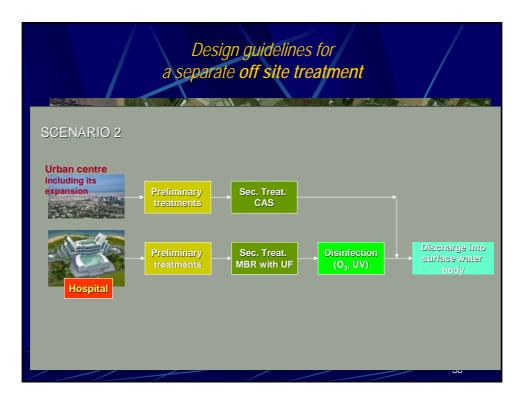


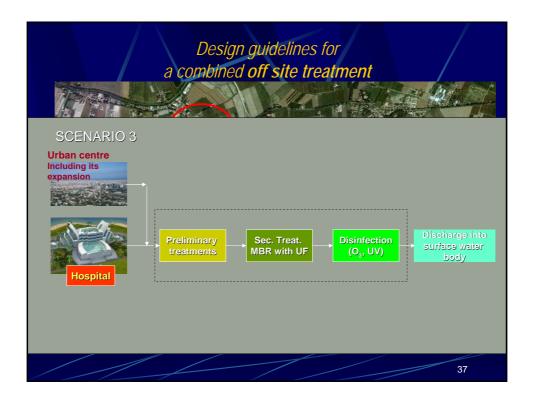


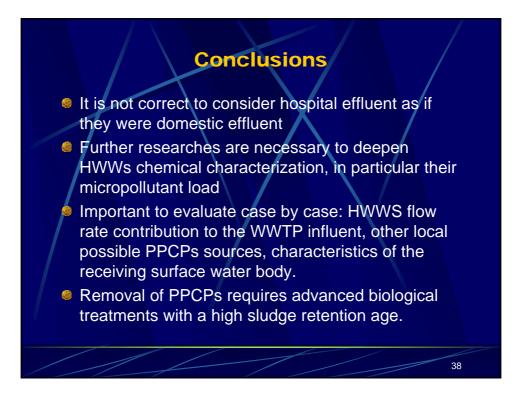







Λ.				carbons
$\Delta $	Wance	manis	active	carnons
/				


	Compound	Limit of quantification (LOQ) (µg L ⁻¹)	Elimination of wastewater (%)	pharmaceuticals	from spiked MBI
Flufenamic acid (FF) 10 n.d. (< LOQ)					PAC dosage > 50 < 200 mg L ⁻¹
Flufenamic acid (FF) 10 n.d. (< LOQ) n.d. (< LOQ) n.d. (< LOQ) Ciprofloxacin 2.5 73 96 >99 Enrofloxacin 2.5 56 96 >99 Moxifloxacin 2.5 78 97 >99	Fluoroquinolonic acid (FQ)	0.5	27	77	94
Ciprofloxacin 2.5 73 96 >99 Enrofloxacin 2.5 56 96 >99 Moxifloxacin 2.5 78 97 >99	Flufenamic acid (FF)	10	n.d. (< LOQ)	n.d. (< LOQ)	
Enrofloxacin 2.5 56 96 >99 Moxifloxacin 2.5 78 97 >99	Ciprofloxacin	2.5	73		
Moxifloxacin 2.5 78 97 >99	Enrofloxacin	2.5	56	96	
	Moxifloxacin	2.5	78	97	
		PAC = powder	active carbor	າຣ	



Conclusioni (2) An MBR treatment is to prefer to a CASP as an MBR is able to guarantee a constant chemical and microbiological quality, a really high retention of SS and of those compounds which are adsorbed onto sludge (including PPCPs). UF is better than MF, expected an efficient retention of viruses Ozonation treatments are considered the best advanced available technology (BAT) in the removing of pharmaceutical micropollutants. Advanced oxidation processes are under study, technical and economical consideration must be

39

taken in greater consideration

