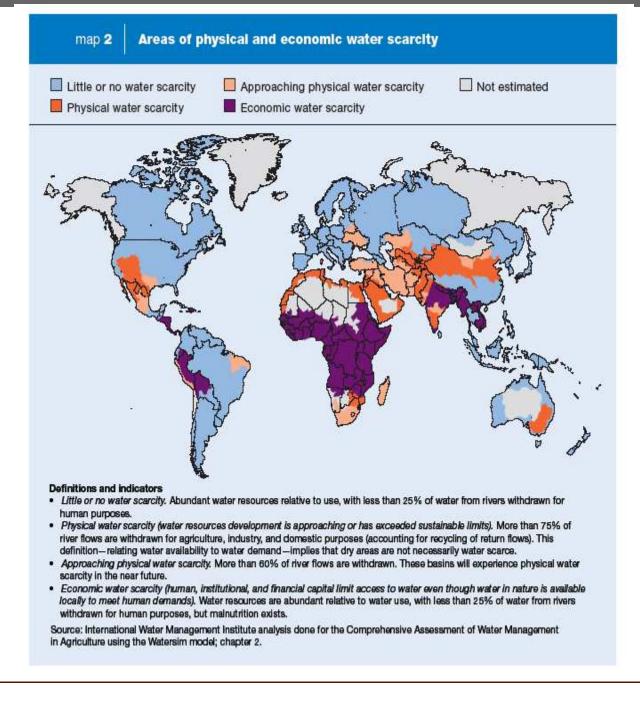
Department of Agricultural Sciences

Workshop Recycling of non-conventional wa Agadir, Morocco

Combining methods for water saving – Cases Western Balkan and Mediterranean region


Sven-Erik Jacobsen

FACULTY OF LIFE SCIENCES

UN – Priority areas

Water (1.5 bill. lack drinking water) Energy (2 bill.) Health (40 mill. AIDS, 1 mill. malaria/y) Agriculture (shortage of food) Biodiversity (loss)

Water

Most important adverse factor in agriculture globally

Largest water user: agriculture 67%, industry 19%, municipal 9%

5000 deaths/day due to lack of clean drinking water

Salinity

Childrens education

UNDP: Without policy changes 2025 67% of world pop. suffer from water shortage/safe drinking water. Today 20% (1.5 bill.).

Water saving strategies

- *Cultural practices.* A diversified crop rotation is important, and may include drought tolerant crops and cultivars.
- *Irrigation.* Supplemental and deficit irrigation may reduce water use without reducing crop yield. A special form of deficit irrigation is alternate irrigation, often termed partial root zone drying (PRD), i.e. irrigating half of the root zone in turn.
- Water harvesting is the process of storing precipitation for beneficial use. Microcatchment water harvesting techniques are contour ridges, semicircular bunds, and small runoff basins. Macro-catchment systems are characterized by having runoff water collected from relatively large catchments.
- Treated wastewater is a potential resource of water and plant nutrients (N and P) and organic matter, which contribute to soil fertility. Wastewater treatment is, however, characterized by a high cost and technical skills required for operation and maintenance.
- *Desalination* or use of *saline water*, may be used untreated for some tolerant crops, whereas desalination may provide clean water, after a costly process.
- *Breeding*. Drought tolerant traits should be identified for breeding programmes using advanced physiological and biochemical screening tools.

Others. Water transport and virtual water

Mixed crops

Andenes

Ancient techniques for water saving

Aynokas

Ccochas

Water Resource Strategies and Drought Alleviation in Western Balkan Agriculture

WATERWEB (WATER resource strategies and drought alleviation in WEstern Balkan agriculture)

Proposal/Contract no.: 509163

Problems

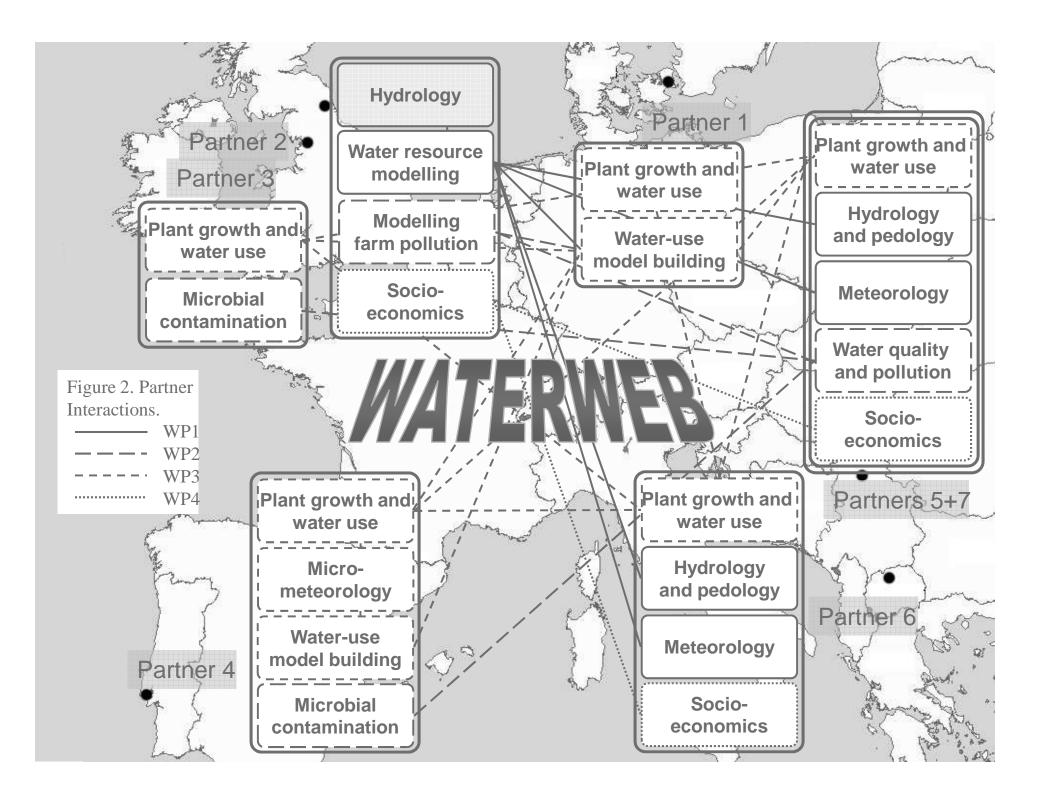
Serbia

- Drought
- Increased irrigation, causing chemical and microbiological contamination

Macedonia

- Drought
- Less irrigation, due to climatic conditions, administrative and operational difficulties, farmer reluct pay water charges

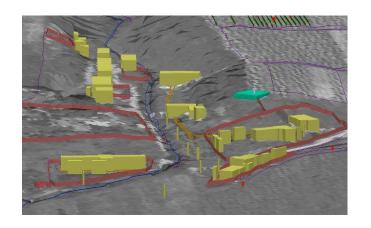
FACULT


Objectives

Strategic objectives

-to contribute to development in the Western Balkans by introducing strategic water management for drought alleviation and sustainable agricultural practices

-to establish and reinforce research expertise in the WB in a range of technologies for water and crop management.



Main results

Water quantity

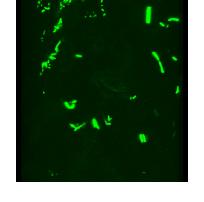
- Introduction of GIS
- Hydrological monitoring: piezometers, access tubes for profile probes
- Measure water table (profile probes, piezometers, flumes)
- Meteorological information
- Time-series data for hydrological models

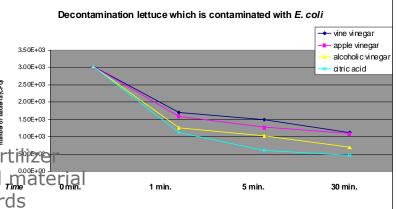
Construction of flume

Slide 13

Incorporation of access tube

Water quality

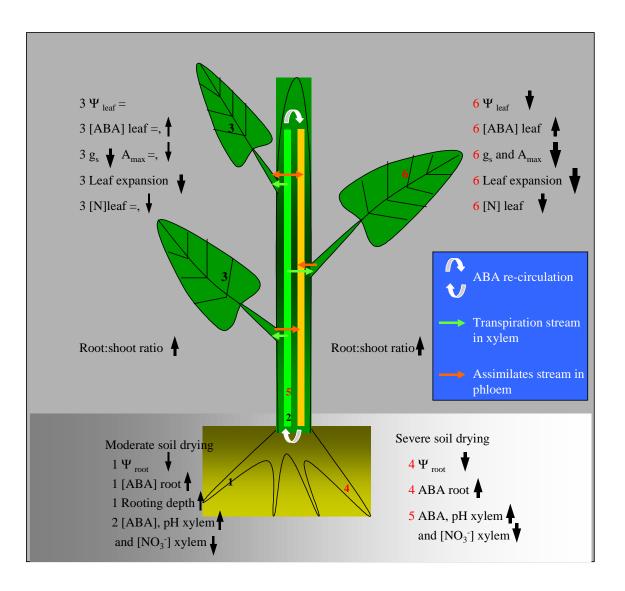

Routes of contamination:


Application of organic wastes to agricultural land as fertimzer

Contamination of waters used for irrigation with faecal mäterial Direct contamination by livestock, wild animals and birds

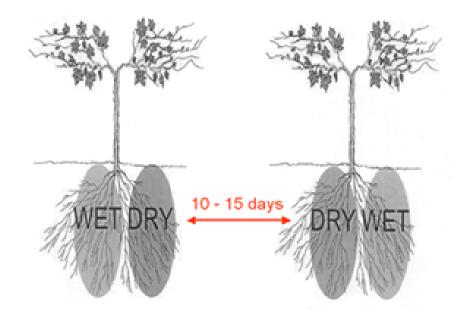
Postharvest issues such as worker hygiene.

- Water both in S+M polluted, and could not be used for irrigation
- Biochemistry lab equipment for analysis of sugars, peroxidases, anthocyanins
- Chemical analyses of drainage water
 - Heavy groundwater pollution with NO3 (7Juli farm)
 - Periodic increases of organic matter from sewage (Radmilovac)
 - Pollution of river (Macedonia)
- Microbiological analyses
 - E.coli and Salmonella in all water and leaves of plants
 - Some effects on fish
 - Radmilovac: Lettuce E.coli, Salmonella, Listeria, crops more contaminated than products on market
 - Decontamination with UV and organic solutions may have effect
- Ecotoxicological characterization of pesticides (Portugal)
 - Simazine, terbuthylazine, clorpyrifos

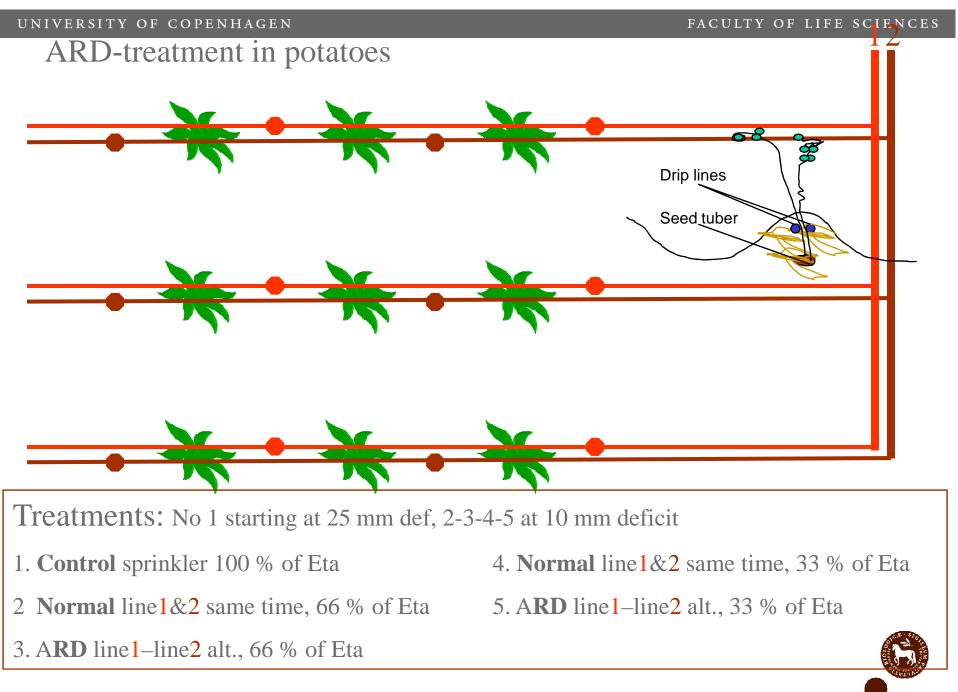

FACULTY OF LIFE SCIENCES

Water use

- Microscope-Leica software, high resolution
- Tomato (polytunnel, greenhouse). Sugar increased
- Grapevine WUE x2, water 50%, yield same
 - Shoot growth: Natural cover < soil tillage
- Potato WUE up, water 70%, yield same, PRD/DI
 - PRD from tuber initiation
 - Marketable tubers up
 - Improved N availability
- New irrigation of maize
- Quinoa potential



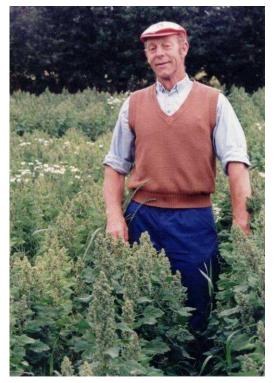
ABA signalling and plants drought adaptation



Deficit irrigation

Alternate Root Drying (ARD) or Partial Root Zone Drying is a deficit irrigation strategy, where plants are irrigated alternately in different zones of the root system, so that part of the root system is temporarily exposed to water deficit which may produce chemical signals closing stomata and modifying growth and hereby improving WUE.

Studies in fruit trees and maize show that ARD has a neutral effect on yield, while reducing water use up to 50%, leading to an increased WUE.


Effect of PRD on water use, WUE and fruit quality

(no or minor reduction in yield)

Plant	Water use, % of FI	Fruit quality	WUE, % of FI	Ref.
Cotton	70 50	I*	134 190	Tang et al., 2005 Kirda et al., 2005
Tomato	50	Ι	163	Kirda et al., 2004
Pear	55	n.m.	145	Clancy, 1999
Grapevine	50	Ι	152	Dry et al., 2000
Hot pepper	50	I	166	Dorji et al., 2004
Potato	70	Ι	143	Shahnazari et al., 2006

I=improvement of quality; n.m.=not measured

FACULTY OF LIFE SCIENCES

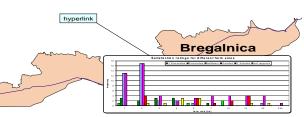
Quinoa outside South America

Water economy

Survey Serbia

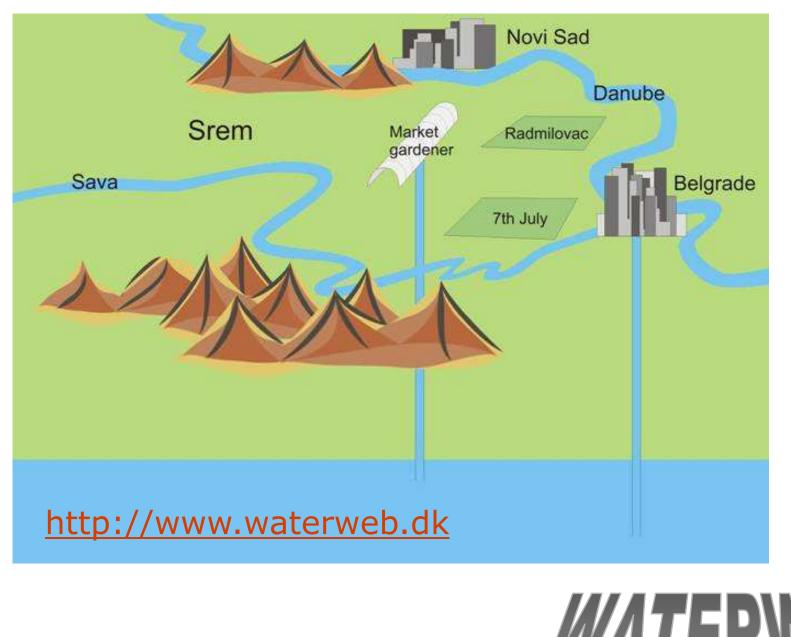
- Farmers lack faith
- Many without licence extract water
- Price more important than water quality
- Water contamination is seen in all Serbia
- Foreign market demanding on fresh produce

Survey Macedonia


- Water communities (WC) introduced
- Payment to WCs vary
- Problem non-payers and how to exclude

Land Water Economic Information System:

Water dissemination

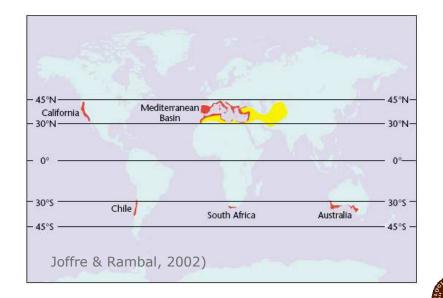

The project has produced a large amount of publications, in total 43 scientific papers, 79 conference presentations and 3 popular papers. Presentations at conferences were given 28 times, and 20 posters have been displayed. In addition, various meetings and media briefings were held, and radio and TV interviews given.

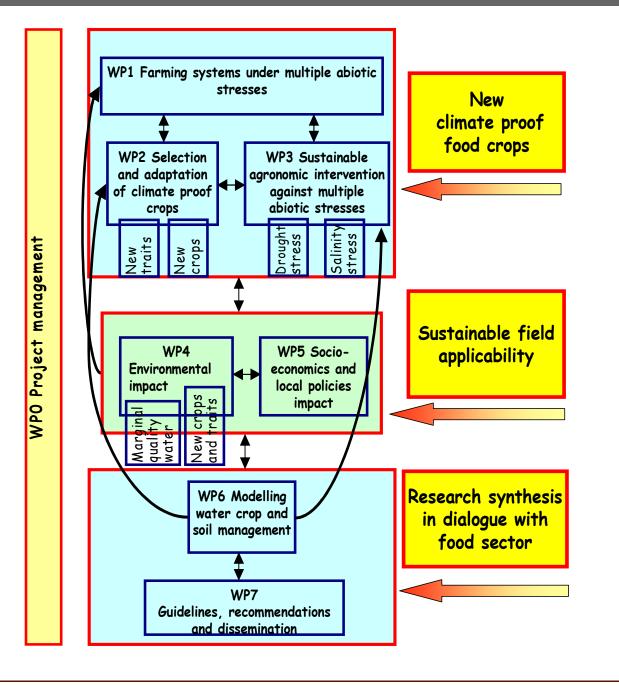
WATERWEB Project in Macedonia

FACULTY OF LIFE SCIENCES

Interactions

Mutual publications Exchange of students Exchange of researchers and professors New project applications


Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED) EU FP7 project


Main objective

Improve food production by introducing climate-proof varieties in crop rotations of wheat, grain legumes and new crops (potentially high value food cash crops), in a rainfed system with supplemental deficit irrigation using marginal-quality water and harvested rainwater. This will accelerate adoption of improved agricultural practices supporting small farmers' livelihood and income levels.

Beneficiaries

UCPH	Denmark	
ICARDA	Syria	
ITQB	Portugal	
ISAFOM	Italy	
NERC	UK	
CEDARE	Egypt	
IAV	Morocco	
CU	Turkey	
UWA	Australia	

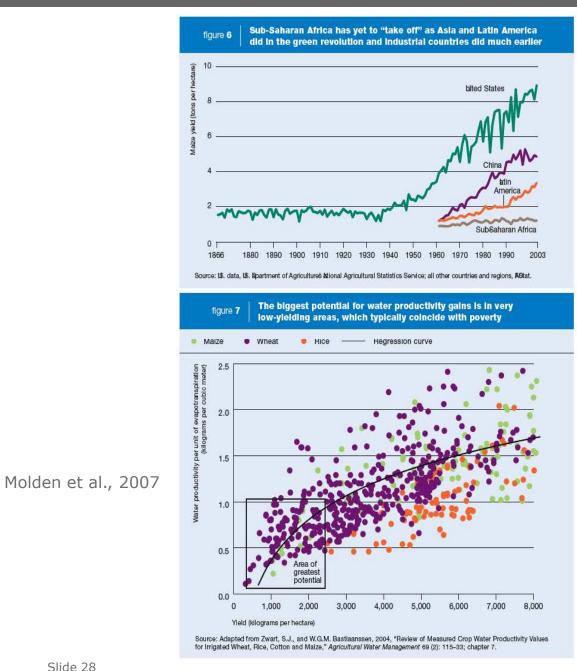


table 1 Comprehensive Assessment scenario characteristics								
Region	Scope for improved productivity in rainfed areas	Scope for improved productivity in irrigated areas	Scope for irrigated area expansion					
Sub-Saharan Africa	High	Some	High					
Middle East and North Africa	Some	Some	Very limited					
Central Asia and Eastern Europe	Some	Good	Some					
South Asia	Good	High	Some					
East Asia	Good	High	Some					
Latin America	Good	Some	Some					
OECD countries	Some	Some	Some					

Molden et al., 2007

FACULTY OF LIFE SCIENCES

Conclusion

Water saving	Water saving	Water source	Technology	Problem	Benefit
technique					
Supplemental/deficit	20-50% of	Marginal-	Surface,	Salinisation	Maintain yield,
irrigation	irrigation (20-	quality	furrow,		improve quality
	100 mm)	(treated	sprinkler, drip		
		wastewater,			
		saline water)			
Water harvesting	Extra source	Rain	Canals,	Macro-	Run-off water
			reservoir	catchment	saved for the
					crops
Treated wastewater	Extra source	Urban,	Chemical,	Contamination	Nutrient-rich
		industrial	biological	of soil and	water source
				groundwater	
Saline water	Extra source	Brackish- and	Direct use	Salinisation	Clean water
		seawater			source
Breeding	WUE +10%	Any source	Improved	Longterm	Improved yield
			varieties	effort	under drought

FACULTY OF LIFE SCIENCES

UNIVERSITY OF COPENHAGEN

Efficient use of resources Water

Agricultural water management investments alone cannot eliminate poverty. Many poverty reduction gains come from better credit and insurance, better farm practices, stronger links to markets and support services, and improved health care. So water management approaches need to be better integrated into broader poverty reduction strategies.

Research and development Irrigation technology Water harvest Wastewater Saline water Crop rotation

