

Content

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

- Introduction: Use of treated waste water
- Risk for humans and the environment
 - Routes of exposure
 - WHO Guidelines 2006
- Risk reduction measures

How can treated wastewater be reused?

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

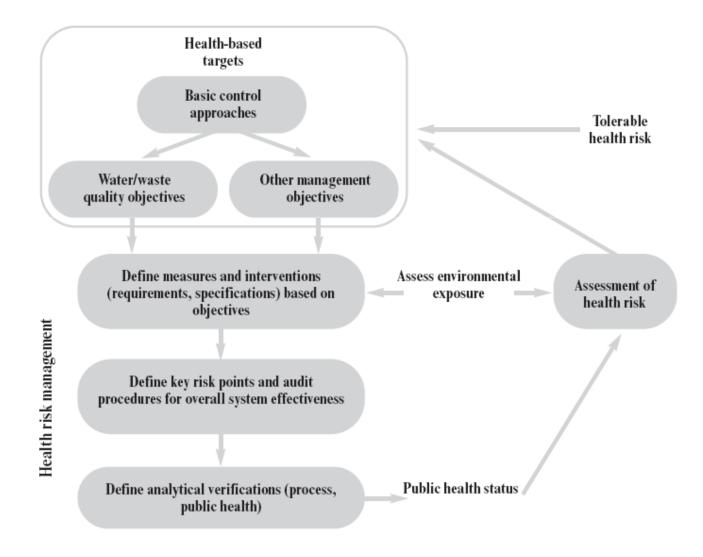
- Urban water reuse (unrestricted & restricted) (e.g. toilet flushing)
- Agricultural irrigation (food & nonfood crops) (unrestricted & restricted)
- Recreational water use (unrestricted & restricted)
- Environmental water reuse (Wetlands restoration, stream augmentation, water impoundments for boating, wading, andswimming
- Industrial water reuse (e.g. cooling water)
- Groundwater recharge
- Indirect potable reuse

Water-related diseases in developing countries

- Half the people in the developing world are suffering from one or more of the main diseases: diarrhea, ascaris, dracunculiasis (guinea worm), hookworm, schistosomiasis (bilharzias, or snail fever) and trachoma.
- Approximately 4 billion cases of diarrhea each year cause 2.2 million deaths, mostly among children under five
- Intestinal worms infect about ten percent of the population of developing countries;
- Worldwide, over 2 billion people are infected with schistosomiasis and soiltransmitted helminthes, of whom 300 million suffer serious illness;
- Arsenic in drinking water is a major public health threat. In Asia, more than 50 million people per year drink arsenic-contaminated water.

"Five F's" in water and sanitation

Fluid - drinking contaminated water and having too little water to wash – (waterborne fecal-oral diseases like cholera, typhoid, diarrhea, viral hepatitis A, dysentery and dracunculiasis (guinea worm disease)).


Feces - contamination of water, soil and food with human fecal matter

Fingers - unwashed hands preparing food or going into the mouth **Food** - eating contaminated food

Flies - spreading disease from feces to food and water or directly to people

Harmonized approach to risk assessment

(Stockholm Framework (WHO,2001))

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Excreated organism concentrations in WW (WHO, 2006)

Organism	Numbers in wastewater (per litre)	<u></u>
Bacteria		Universität für Bodenkultur Wien
Thermotolerant coliforms	10 ⁸ -10 ¹⁰	Department für Wasser-Atmosphäre- Umwelt
Campylobacter jejuni	10-104	Oniweit
Salmonella spp.	1-105	
Shigella spp.	10-104	
Vibrio cholerae	10 ² -10 ⁵	
Helminths		Exposure route:
Ascaris lumbricoides	1-103	Contact/consumption
Ancylostoma duodenale / Necator americanus	1-103	
Trichuris trichiura	$1-10^{2}$	Relative importance:
Schistosoma mansoni	ND	•
Protozoa		Low – high
Cryptosporidium parvum	1-104	
Entamoeba histolytica	$1-10^{2}$	
Giardia intestinalis	$10^2 - 10^5$	
Viruses		
Enteric viruses	105-106	
Rotavirus	10 ² -10 ⁵	

ND, no data

Sources: Feachem et al. (1983); Mara & Silva (1986); Oragui et al. (1987); Yates & Gerba (1998).

Routes of Transmission/Exposure to Pathogens or Contaminants

People at risk:
Consumers

- Consumption of contaminated products
- Consumption of drinking water contaminated due to wastewater use activities
- Consumption of animals or animal products contaminated due to wastewater exposure

Exposure & Burden of Disease

People at risk:

Farm workers and their families Nearby communities

- Human contact with wastewater or contaminated crops
- Inhalation
- Vector borne disease transmission resulting from the development and management of wastewater irrigation schemes

WHO Guideline (2006) on reuse of human excreta

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

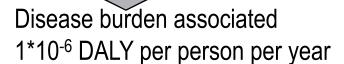
are built on...

the **assessment and management** of health risks associated with wastewater use through the application of various health protection measures during all steps of wastewater use and until it reaches the consumer.

because...

the consumer have a right to demand safe food.

Tolerable health risk (WHO, 2004)


Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

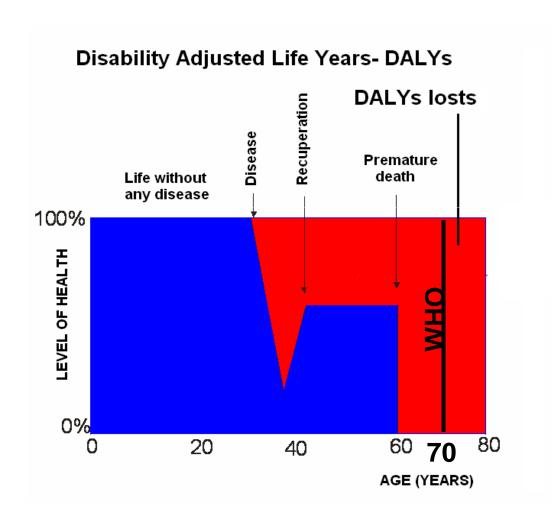
Carcinogenic chemicals

Microbiological contaminations

Mild but more frequent illness
e.g. self-limiting diarrhoea
(e.g. case fatality rate 1*10⁻⁵ at an annual disease risk of 1 in 1000
(1 in 10 lifetime risk)
This is also about 1*10⁻⁶ DALY pppy

DALY = Disability adjusted life years (WHO, 2004)

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt


The disability adjusted life year (DALY) is a composite measure of years of life lost because of premature mortality and equivalent years lost because of lower 'quality of life' as a result of serious injury and disability.

DALY = Severity of health effects * duration * number of people affected 0 (normal good health) 1 (death).

DALY = years of life lost by premature mortality (YLL) and years of healthy life lost in states of less than full health, i.e., years lived with a disability (YLD)

DALY = YLL + YLD

Definition of the tolerable risk

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

To standardize the acceptable risk caused by different agents in different norms (Drinking water a risk of 10⁻⁵ for cancer while in irrigation a risk of 10⁻³ for diarrheas)

How do WHO Guidelines protect people?

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Health based target can be reached when:

- all protection measures result in pathogens reduction 6-7 log units.
- viral reduction of 6-7 Log units, is applicable by default to bacterial and protozoal pathogens
- In addition to Helminthes eggs reduction to achieve < 1egg/l

Verification by monitoring of \mathcal{E} . coli or thermotolerant coli $< 10^{\circ}$ - 10° / 100 ml

Can be specified in terms of e.g.:

Health outcome

Waste water quality

Performance - removal

Specified technology - special treatment

6 -7 log reduction

BOKU

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

90 % reduction	1 log
99 % reduction	2 logs
99.9 % reduction	3 logs

- 99.99 % reduction 4 logs
- 99.999 % reduction5 logs
- 99.9999 % reduction 6 logs
- 99.99999 % reduction7 logs

log 6 reduction:

100 000 000 (10⁸ thermotolerant coliforms) will be reduced to 100 (10²)

Ranges for Pathogen Reduction by Various Health Protection Measures

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

- Treatment
- Drip irrigation (Low growing crops, (LGC)
- Drip irrigation (high growing crops, (HGC)
- Spray irrigation
- Spray buffer zone
- Pathogen die off
- Produce Washing Produce peeling
- Produce cooking
- Produce disinfecting

1-6 log units

2 log units

4 log units

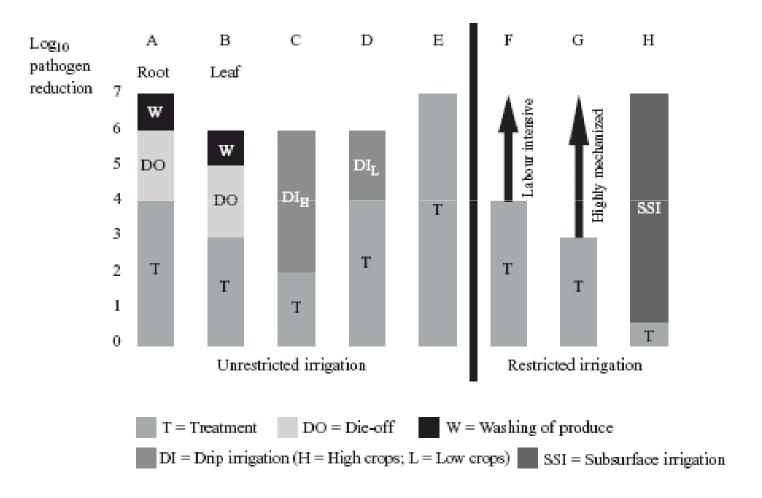
1 log units

1 log units

0.5-2.0 log units

1 log units

2 log units


6-7 log units

2 log units

Combination of different health protection measures to achieve the health based target of 10⁻⁶ DALY's per person per year

Source: WHO guidelines for safe use of wastewater, excreta and grey water, 2006

Floresetteereneumd	Soil concentration	Ornania commonad	Soil concentration
Element/compound	(mg kg ⁻¹)	Organic compound	(mg kg ⁻¹)
Antimony	36	Dichlorobenzene	15
Arsenic	8	2,4-D	0.25
Barium*	302	DDT	1.54
Beryllium*	0.2	Dieldrin	0.17
Boron*	1.7	Dioxins	0.00012
Cadmium	4	Heptachlor	0.18
Fluorine	635	Hexachlorobenzene	1.40
Lead	84	Lindane	12
Mercury	7	Methoxychlor	4.27
Molybdenum	0.6	PCBs	0.89
Nickel	107	PAHs (as benzo(a)pyrene)	16
Selenium	6	Pentachlorophenol	14
Silver	3	Phthalate	13,733
Thallium*	0.3	Pyrene	
Vanadium*	47	Styrene	0.68
Aldrin	0.48	2,4,5–T	3.82
Benzene	0.14	Tetrachloroethane	1.25
Chlorodane	3	Tetrachloroethylene	0.54
Chlorobenzene	211	Toluene	12
Chloroform	0.47	Toxaphene	0.0013
		Trichloroethane	0.68

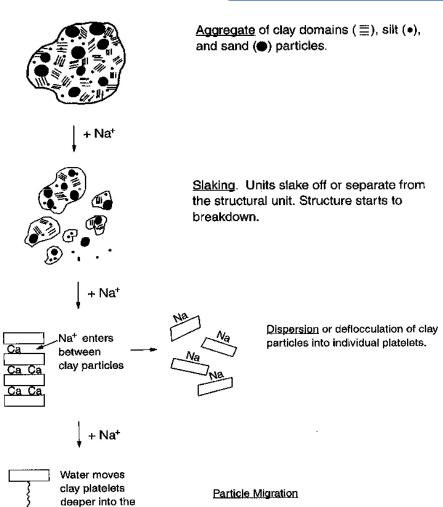
Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Water quality for irrigation (WHO, 2006)

Parameter	1.00	Units	Deg	gree of restriction o	n use	10
			None	Slight to moderate	Severe	_
Salinity EC _w ^a		dS/m <0.7 0.7-3.0	>3.0	_		
TDS		mg/l	<450	450-2000	>2000	
TSS		mg/l	< 50	50-100	>100	
SAR ^b	0-3	meq/l	>0.7 EC _w	$0.7 - 0.2 \; EC_w$	<0.2 EC _w	FO Flootrical
SAR	3-6	meq/l	>1.2 EC _w	$1.2 - 0.3 \; EC_{\rm w}$	$<0.3~EC_{\rm w}$	EC _w Electrical conductivity in
SAR	6-12	meq/l	>1.9 EC _w	$1.9 - 0.5 EC_{\rm w}$	$< 0.5 EC_{\rm w}$	deciS/m (25°C
SAR	12-20	meq/l	>2.9 EC _w	$2.9-1.3 \; EC_{\rm w}$	<1.3 EC _w	40010/111 (20 0
SAR	20-40	meq/l	>5.0 EC _w	$5.0-2.9 \; EC_{\rm w}$	<2.9 EC _w	
Sodium (Na ⁺)	Sprinkler irrigation	meq/l	<3	>3		
Sodium (Na ⁺)	Surface irrigation	meq/l	<3	3-9	>9	
Chloride (Cl ⁻)	Sprinkler irrigation	meq/l	<3	>3		
Chloride (Cl ⁻)	Surface irrigation	meq/l	<4	4-10	>10	

Water quality for irrigation (WHO, 2006)

Parameter	100	Units	Degree of restriction on use		
		_	None	Slight to moderate	Severe
Chlorine (Cl ₂)	Total residual	mg/l	<1	1-5	>5
Bicarbonate (HCO ₃ ⁻)		mg/l	<90	90-500	>500
Boron (B)		mg/l	< 0.7	0.7-3.0	>3.0
Hydrogen sulfi	de (H ₂ S)	mg/l	< 0.5	0.5-2.0	> 2.0
Iron (Fe)	Drip irrigation	mg/l	< 0.1	0.1-1.5	>1.5
Manganese (Mn)	Drip irrigation	mg/l	<0.1	0.1–1.5	>1.5
Total nitrogen	(TN)	mg/l	<5	5-30	>30
pH		Nor	mal range 6.5-8		
Trace elements	(see Table A1.2)				


Challenges of waste water use

BOKU

- Increase in soil salinity
 - Residential use of water typically adds about 200-400 mg/L of dissolved salts with high Na content
 - Changes osmotic pressure at the root
 - Provokes specific ion toxicity (Cl, B or Na)
 - Interferes with uptake of essential nutrients (K,NO₃)
 - May destroy soil structure

Sodium Adsorption Ratio (SAR) $SAR = \frac{\left[Na^{+}\right]}{\sqrt{\frac{\left[Ca^{2+}\right] + \left[Mg^{2+}\right]}{2}}}$

soil

Measures to cope with salinity

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Salinity

Avoid the use of water with 500-2000 mg TDS/l or 0.8-2.3 dS/m electrical

conductivity, depending on the type of soil and land drainage

Reduce upstream salt use and discharge into wastewater

Soil salinity and sodicity Increase soil washing, improve ground drainage and/or apply soil amenders

Dilute water with sodium adsorption ratio >8 and electrical conductivity >2.3 dS/m

Conclusions

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

WHO Guidelines (2006) set standards and reduction goals for pathogens and chemical contaminants and give recommendations for reduction measures to achieve:

human health and environmental health

Wastewater use in agriculture demands:

- monitoring and control of the treatment, the wastewater, the application and the product
- health protection measures
- hygiene education programs for farmers and local food handlers

for a continuous improvement to sustain and ensure **safe use of wastewater** in agriculture

Universität für Bodenkultur Wien Department für Wasser-Atmosphäre-Umwelt

Thank you for your attention

Third edition of the WHO

Guidelines for the safe use of wastewater,
excreta and greywater, 2006