
INNOVAMED

The re-use of treated wastewater for sustainable agriculture

> Morocco: Drarga Wastewater Treatment and Reuse Project

> > October 8-11, 2007

The Commune of Drarga

- Drarga is a rapidly expanding town in the Souss-Massa (population 10,000)
- The town of Drarga has built potable water and sewage collection systems
- Raw wastewater was released untreated in nature, creating cesspools

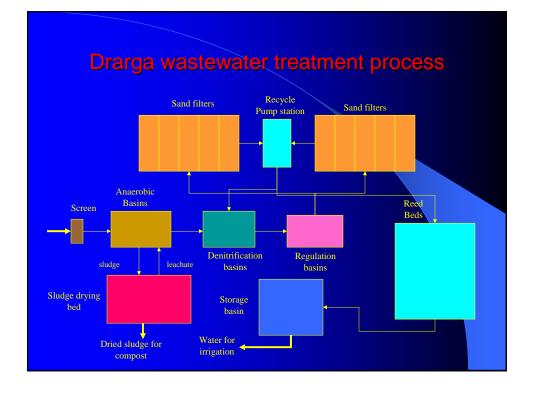
Project Objectives

- Treat the domestic sewage of Drarga
- Reuse the treated effluents for irrigation
- Implement a technology adapted to the Moroccan context
- Recover the operation and maintenance costs of the plant
- Demonstrate a model of institutional partnership

Project Steps

- 1997 : Feasibility study
- 1997 : Environmental impact assessment
- 1998 : Signature of a collective agreement
- 1998 : Observational study tour in the U.S.
- 1998 : Plant design
- 1999 2000 : Construction
- October 2000 : Inauguration

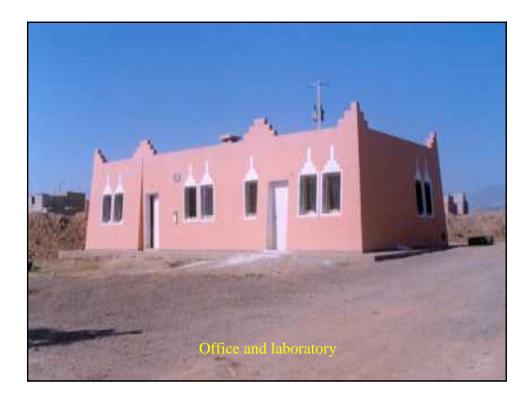
CRITERIA FOR SELECTING APPROPRIAT TECHNOLOGY


- Efficiency and performance of the technology;
- Reliability of the technology;
- Institutional manageability, financial sustainability;
- Wastewater characteristics,
- Desired effluent quality which is mainly related to the expected uses

- Stabilization ponds or lagoons,
- Sand filters,
- Land treatment systems, and
- Constructed wetlands

Plant design

- Treatment capacity : 1000 m³ / day
- Recirculating sand filtration system
 - Primary treament: anaerobic basins
 - Secondary treatment: sand filters
 - Tertiary treatment: reed beds
- Residual sludge drying beds
- Treated effluents storage basin



Plant performance							
Indicator	BOD ₅	COD	TSS	NTK	Fecal		
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Coliforms (mg/l)		
Entrance	625	1825	651	319	6.3x10 ⁶		
Standard	<30	N/A	<30	N/A	10 ⁸		
Exit	10	75	3.9	10.2	<500		


Project Costs

- The project cost is \$1 million
 - Studies : \$150,000
 - Design : \$100,000
 - Construction : \$400,000
 - Equipment : \$250,000
 - Transportation : \$100,000
- Operating costs : \$1,000 per month

Wastewater reuse

- Treated effluents are sold to farmers through a water users association
- Treated effluents contain fertilizer elements (potassium, phosphorous)
- The price of the treated wastewater is competitive with alternative water sources

	I	Biomass Yie	ld	
	Yield of the	Total yield	Average	Yield
	1 st cut	(T/ha)	yield	California-
	(T/ha)		(T/ha)	Davis (T/ha
Alfalfa	2.85	28.5	14	31
Italian	9.75	48.7	21	-
Ray-				
Gras				

Fertilizer savings	

	Tomato	Zucchini	Alfalfa	Italian	Wheat	Maize
				Ray Grass		
Water Requirements (m3/ha)	8 000	5 000	12 000	10 000	4 000	4 800
Nitrogen (kg/ha)	248	155	372	310	124	149
Phosphorous (kg/ha)	352	220	528	440	176	211
Potassium (kg/ha)	408	255	612	510	204	245

Project Impact

- The town of Drarga has full sewage treatment
- There is more water available for irrigation
- Crop yields have increased and farmers are saving on fertilizer applications
- Property values in Drarga have increased
- The project has generated a lot of interest from other localities in adopting similar technologies

Conclusion

- The Drarga wastewater treatment and reuse project is demonstrating the use of nonconventional water sources in a water scarce environment
- This project and the lessons learned from it can serve as a useful model for replication of similar technologies and approaches in many areas