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Water availability

70% of the surface of the Earth has water

• 2,5 %  freshwater

• 1 % human consumption
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Water disinfection needs

Microbial contamination of potable water due to the lack of an 
appropriate treatment of waste water is now a days a very 
important problem, especially in regions of developing countries.

Water is the main vehicle of distribution of many waterborne 
diseases. Water was responsible for big epidemics in the world 
like tiphus and cholera.

WHO recognised the disinfection as one of the most important 
barriers for protection of public health.
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Everybody might have access to safe water to satisfying main 
needs of drinking water consume, clean, food production and 
energy at a reasonable cost. The water suply for these needs 
has to be done in a sustainable way.

Access to water in the World in 2025
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Water disinfection issue

Percentage of disinfected water 
in rural areas of Latinamerica.

• Lack of adecuated systems for 
water treatment and 
purification.

• Scarcity of rainwater.
• Restricted access to water 

resources due to 
contamination of hydric 
resources.

• Lack of adequated intallations 
for water storage.

• Lack of effective and adequate 
water distribution systems.

• Etc.

Causes of the problemCauses of the problem:
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Desinfection: killing or inactivation of pathogenic 
microorganisms.

• Indicators: bacteria total coliforms and faecal coliforms.

• Standard methods:
Chlorine
Chloramine
Ozone
UV(C) light

Disinfection of water
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Water Disinfection

EPA (Environmental Protection Agency) Clasification , 1999

Disinfection techniques

Chlorination
Ozonation
UV(C) disinfection
Technologies under research

Photocatalysis 
Electrophotocatalysis
Photosensitation
Solar water disinfection

Coagulation and sedimentation

Filtering
Fast filtering
Sand filtering
Active carbon
Membrane filtering

Widely used
Expensive
Do not really destroy microorganisms

Physiscal removal 
of microorganisms

Microorganism 
inactivation (death)

High efficiency for virus and bacteria
Widely used: 100 years
THM and other carcinogenics
Flavour to water

Highly oxidative
Expensive
Bromate generation (toxic)
In-situ generation

Germicidal effect: 254 nm.
No generates toxic by-products
Non-oxidative
Not feasible with natural light
Expensive
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Chlorination

Gas chloride, sodium and calcium hypochlorite

Advantages
• Highly germicidal
• Residual effect
• Bacterial re-growth control

Disadvantages
• Generation of toxic by-products
• Bad odour and taste to water
• Dangerous reactivity with NOM
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Ozonation

Ozone (from Air or Oxygen)

Advantages
• Require low doses and contact times
(300-3000 faster than chlorine)
• Non-generation of THM, except for the 
presence of Bromide.

Disadvantages
• Non-residual effect
• Potentially toxic by-products
• In situ generation
• Immediately used
• Expensive O&M
• Technically complex
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UV-C disinfection
UV-C lamps

Advantages
• Easy O&M
• Non-generation of toxic by-products

Disadvantages
• Non-residual effect
• Uneffective against protozoan
• Limited disinfectant effect by colour, turbidity and suspended matter
• Bacterial re-growth if genetic material is not destroyed
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UV-C disinfection

Disinfection mechanism with UV-C radiation
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UV-C disinfection

Required UV-C dose to reach a 90% of inactivation with 
different microorganisms (adapted from Bitton, 2005). 

More resistant

Less resistant
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Solar radiation itself has not germicidal effect. Nevertheless, 
the synergistic effect of solar (UV-A) radiation and thermal 
heating of water under solar exposure has an important 
disinfectant capacity so-called SODIS or “Solar Disinfection”.

From 1958 it is known that solar photons with wavelenghts 
between 300 y 500 nm may inhibit the reproduction capacity
of a variety of microorganisms.

Photo-repair mechanisms are also well known in bacteria (no 
virus) in the same spectral range (1967).

Solar disinfection: SODIS

Caslake et al., Appl. Environ. 
Microbiol. 2004, 70, 1145–1150
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Gill & McLoughlin, Journal of Solar Energy Engineering, ASME, 2007.

When inactivation is done under constant irradiation conditions:
Disinfection kinetics (also for disinfecting agents like chlorine, UV, etc.) 
obeys to a first order kinetics, Chick Law:

Nt: concentration of viable microorganisms at time t.
K: constant of disinfection rate.

This relationship under solar radiation changes to:

Solar disinfection
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Solar disinfection

a) QUV: cumulative UV energy during exposure time per unit of 
volume of treated water (J l-1).

Experimental time is used to compare results when lamps are used.
When solar radiation drives the process, we can use the following 
evaluation parameters:

b) UV Dose: UV energy received per unit surface during exposure 
time (J m-2). DoseUV = UVG,n·∆tn

EnergyUV = UVG,n·A·∆tn

c) UV Energy: total UV energy received during exposure time (J).
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WATERBORNE PATHOGENS

BACTERIA
• Salmonella
• Shigella
• Campylobacter
• Vibrio 
• Escherichia coli

VIRUS
• Poliovirus
• Hepatitis A
• Parvovirus
• Adenovirus
• Rotavirus

PROTOZOA
• Giardia lamblia 
• Entamoeba 

histolytica
• Crystosporidium

HELMINTHS
• Taenia saginata
• Ascaris

lumbricoides
• Schistosoma

Water Disinfection

InactivationInactivation
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Solar disinfection: SODIS
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McGuigan et al., J. Applied 
Microbiology 2006, 101, 453-463.

Viability under 
Natural solar 
radiation at PSA

<UVA>=48 W m-2

20ºC

3.5 kJ

Solar disinfection of E. coli
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Kehoe et al., Letters in Applied 
Microbiology 2004, 38, 410–414.

E. coli

Solar disinfection of pathogenic bacteria
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McGuigan et al., J. Applied 
Microbiology 2006, 101, 453-463.

Mice Infectivity
Solar simulator: 830 W m-2, 40ºC

Solar disinfection of C. Parvum oocysts
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 F. antophilum
 F. verticillioides
 F. solani
 F. oxysporum

C. Sichel, et al. Appl. Cat. B: 
Environ. 74 (2007) 152-160.

Solar disinfection of Fusarium spores

Under natural solar radiation
Wild fungal spores
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Resistance relative to the solar radiation of 
several microorganisms versus E. coli 

Gill & McLoughlin, 
Journal of Solar Energy
Engineering, 
ASME, 2007.
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AOPs

AOPs are based on generation of a highly oxidative species.

The AOPs that produce hydroxyl radicals (•OH) are the most 
efficient.

1.25Peroxide radical

0.54Iodine
0.80Bromine
1.00Chlorine
1.10Hypochlorite acid
1.15Chloride dioxide
1.17Hypobromite acid
1.24Permanganate

1.31Hydrogen peroxide
1.78Oxygen
2.06Hydroxyl radical
2.23Fluorine

Oxidation 
potential 

ref. HgCl2 (V)
Species
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AOPs - ●OH

Photocatalytical
processes

Photocatalytical
processes

Supercritical
Water Oxydation

Supercritical
Water Oxydation

●OH
γ-raysγ-rays

O3/UVO3/UV

H2O2/O3
H2O2/O3

H2O2/O3/UVH2O2/O3/UV

UV/Fe+3/H2O2
UV/Fe+3/H2O2

UV/TiO2/H2O2
UV/TiO2/H2O2

Solar photocatalysis
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AOPs - ●OH

Several semiconductors may act as photocatalisyts

ZnS (3.7 eV)

ZnO (3.2 eV)

TiOTiO22 (3.05(3.05--3.25 eV)3.25 eV)
Fe2O3 (2.2 eV)

CdO (2.1 eV), etc.

High UV absorptivity

High adsorption rate of many contaminants

Redox potential (EBV-EBC) adequate for 

organics oxidation

High photocatalytic activity

Resistant to photo-corrosion

Recyclable (re-usable)

Inocuos

Easy to handle

Low cost and high production
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AOPs - ●OH

EBG (TiO2) = 3.05-3.25 eV
Photon: E = h·ν

h·ν > EBG

λ < 300-390 nm
(5-7% Solar spectrum)

The photoexcitation of semiconductor particles promotes an electron 
from the valence band to the conduction band thus leaving an electron 
hole in the valence band; in this way, electron/hole pairs are generated.

Heterogeneous photocatalysis using semiconductor oxides

e–/h+ recombination ⇔ e–/h+ separation

−•−
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AOPs - ●OH

Before catalyst phoytoexcitation, Red2 and Ox1 species have to be previously 
adsorbed on the catalyst surface to avoid recombinations of e-/h+ pais.

ads,1ads,1ads,2ads,2 dReOxe           OxdReh →+→+ −+

AQUEOUS PHASE

h·ν ≥ 3.2 eV

TiO2

e-

h+

eBC
- hBV

+

e-/h+

H2O •OH + H+

O2

O2
-•

Photo-oxidation

Oxid1

Red1

Red2

Oxid2

h·υ

Recombination

Recombination
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The first contribution on water disinfection using TiO2 assisted 
photocatalysis was done by Matsunaga in 1985.
Up to now:

- Electrophotocatalyisis and photocatalysis with TiO2

- supported and slurry TiO2

- Lamps and solar radiation

M. Bekbölet, Water Science & 
Technology 35 (1997) 95-100.
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BACTERIA: Enterococcus faecalis (Gram+) Escherichia coli (Gram-)

VIRUS AND BACTERIOPHAGE: Poliovirus 1, Phage MS2 (RNA-
bacteriophage)

CANCER CELLS: HeLa cells (cervical carcinoma), T24 (bladder cancer), U937 
(leukemia).
FUNGI AND YEATS:

“Advanced Oxidation Processes for Water and Wastewater Treatment” IWA Publishing, 2004.
D.M. Blake et al., Separation and Purification Methods, 28 (1999) 1-50. 

1 µm 1 µm

Saccharomyces
Cerevisiae

Conidia
Neurospora crassa

TiO2-UV disinfection
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Fundamental parameters
Irradiation

Continuously irradiation has a higher efficiency than intermitent 
exposure (TiO2 P25 1g/l).

Rincón, A.G and Pulgarin C. Appl. Catal. B: Environ. 44 (2003), 263
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Fundamental parameters
Concentration of catalyst
Initial inactivation rate increases with the catalyst concentration 
until it reaches a certain value, due to the light screening efect.

Rincón, A.G and Pulgarin C. Appl. Catal. B: Environ. 44 (2003), 263
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Fundamental parameters
Post-irradiation events
30 min. exposure to solar simulator radiation: certain inactivaton 
and a later bacterial regrowth in the dark was observed. The 
post-irradiation effect depends on light intensity.

Rincón & Pulgarín, Applied Catalysis B: Environmental 49 (2004) 99–112
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Fundamental parameters
Post-irradiation events
The post-radiation effect after photocatalytic treatment provokes a 
bacterial abatement in the dark.This effect is directly influenced 
by the radiation intensity.

Rincón & Pulgarín, Applied Catalysis B: Environmental 49 (2004) 99–112
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Enzymes

DNA

Structural 
proteins

Cytoplasmatic
membrane

External 
cell wall

Effects of biocidal agents on cells

Biocide

Inactivation
(cidal effect)

Inhibition

“Wastewater microbiology”. Gabriel Bitton, 
John Wiley & Sons, New Jersey, 3rd Ed., 2005.

Disinfection mechanisms
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Bacterial inactivation under solar radiation

Disinfection mechanisms

Direct action

UV absorption by 
DNA molecules of 
microorganisms

Indirect action

Photocatalytic effect 
of TiO2 attacks the 
cell membrane.

Decrease of 
Coenzyme-A levels 
by photo-oxidation, 
which induces celular 
death.

UV

TiO2
H2O •OH
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Light intensity: 1.0 mW/cm2

K. Sunada et al. J. Photochemistry and Photobiology A: Chemistry 6221 (2003) 1–7

Without radiation

Cylindrical shape
Size ∼ 1–2.5 µ m

6 days of exposure

Complete cell 
decomposition

AFM image of E. coli cells on a TiO2 film

Disinfection mechanisms
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1) Partial destruction of 
external cell wall: partial 
viability lost.

2) Reactive species 
reach the cytoplasmatic 
membrane.

3) Reactive species 
attack the lipidic 
membrane: cell death.

K. Sunada et al. J. Photochemistry and Photobiology A: Chemistry 6221 (2003) 1–7

Scheme of photo-destruction (TiO2) process

Disinfection mechanisms
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TiO2-aggregate in contact with E. coli

Adsorption of TiO2 on E. coli cells

• D. Gumy et al. Appl. Cat. B: 
Environ., 63 (2006) 76-84.

• J. Kiwi and V. Nadtochenko, 
Langmuir 2005, 21, 4631-4641.Composition of cell membrane 

favours contact with the catalyst.
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TiO2

Macroconidia of F. Equiseti before and 
after the photocatalytic treatment (5h) C. Sichel, et al. Appl. Cat. B: 

Environ., 74 (2007) 152-160.

TiO2-aggregates in contact with F. equiseti

Adsorption of TiO2 on Fusarium spores
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Chlamydospores de F. solani before and 
after 6h of photocatalytic treatment.

TiOTiO22

C. Sichel, Phytopathology, 
submitted, 2007.

TiO2-aggregates in contact with F. solani

Adsorption of TiO2 on Fusarium spores
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- Lamp (UV/VIS)
- IR filter
- Photo-reactor
- Refrigeration
- Matraz
- Sensors
- Pump

pH
T

Lab Photo-reactor
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Requirements for solar photocatalytic reactors

Chemical resistance to water, pH, without reagents changing.

Flow guaranteed at minimal pressure and  maximal 

homogeneisation.

Efficient distribution of UV radiation from the solar collector to 

the fluid media.

Resistance to temperatures lightly high: 40-50ºC. 

Robust and resistant to environmental condictions.

Easy handling, low cost operation and maintenance (modular 

systems).

Cheap and accesible.
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Development of solar collectors

After middle 90s the “Compound Parabolic Collector” or CPC was 
technologically developed.

CPC concentrates all the incoming radiation within an acceptance
angle (2θa) over the recector (fluid), which leads to a Concentration 
Factor of 1 when θa = 90º.

The CPC recovers all the UV radiation (direct and diffusse) received in 
the aperture area of the solar collector.

Compound Parabolic Collectors (CPC)

Partial view of 
Solar Chemistry facilities 
at PSA, Almería (CIEMAT)
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Experiences at pilot plant

Prototype of solar reactor

- Solar radiation
- Photo-reactor (solar collector)
- Tank
- Air
- Sensor
- Pump
- Additives
- Catalyst

s

Isometric scheme

SOLARDETOX project, Brite Euram, 
European Commission (1997-2000)
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P: pump
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Compact module of solar photo-reactor 

Experiences at pilot plant

SOLWATER project, INCO Programme, 
European Commission (2002-2005)
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Cylindrical Support in a CPC
reactor (Ahlstrom paper)

50 mm

Flat support with a special geometry
(patent pending) solar collector

50 mm

Application of Compound Parabolic Collectors (CPC) using new 
geometries for several configuration of the catalyst (AO SOL, Portugal). 

Optical development of CPC for disinfection
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Protocol for solar experiments

1. Catalyst preparation.
2. Solar collector covering.
3. Inoculation of culture &

recirculation.
4. TiO2 adding dispersed in 

small volume.
5. Remove the cover.
6. Experiment starting.
7. Average solar UV energy 

per unit of time and surface 
(WUV·m-2) incoming the 
photo-reactor.
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Solar Disinfection of E. coli in a CPC reactor
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Irradiated collector surface
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Disinfection with TiO2 of E. coli in a solar CPC reactor
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Catalyst disposal
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Reactor flow rate
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C. Sichel, et al. J. Photochem. Photobiol. A, 189 (2007) 239-246.

Disinfection of E. coli with immobilised TiO2 in a CPC reactor
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Solar disinfection for real water is slower and less efficient than for distilled 
water. This graph shows the “tailing effect” attributed to resistant colonies of 
bacteria.

Matrix of the water

Solar disinfection of E. coli in a CPC reactor
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Weather conditions
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C. Sichel, et al. Catalysis
Today 2007, in press.

Solar disinfection of F. antophilum with slurry TiO2
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Weather conditions

CLOUDY DAY

Max. UV Irradiance:
25 Wm-2

Max. UV Dose:
380 kJm-2

Solar disinfection of F. antophilum with slurry TiO2

Similar photocatalytic kinetics for both cases. 
Solar disinfection yields very different results.
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Disinfection of E. coli with immobilised TiO2

SPRING AND SUMMER 
(UVmax:38-45wm-2).
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Disinfection of E. coli with immobilised TiO2

AUTUM AND WINTER 
(UVmax: 28-38Wm-2).

Weather conditions

C. Sichel, et al. Catalysis
Today 2007, in press.
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Role of solar radiation

Comparison of experiments in different seasons, early and later in 
the day, and under cloudy and sunny conditions, leads us to 
conclude that solar photocatalytic disinfection does not depend 
proportionally on solar UV irradiance (solar UV intensity) as long 
as enough photons have been received for disinfection. 

The minimum UV energy necessary to reach a certain disinfection 
depends on the microorganism and the reactor configuration.

Solar-only disinfection requires higher minimum solar UV 
irradiance and higher minimum UV dose for disinfection than solar 
photocatalytic disinfection.
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Inactivation of C. parvum

C. parvum oocysts
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F. Mendez-Hermida, et al. J. Photochem. Photobiol. A, 88 (2007) 105-111.

Sodis and solar photocatalysis with fixed TiO2
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Photocatalytic inactivation Fusarium

C. Sichel, et al. Appl. Cat. B: 
Environ., 74 (2007) 152-160.
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The AQUACAT and SOLWATER projects were financed by EU 
under the INCO-DEV program during (2003-2006) 

MAIN OBJECTIVE: development of a completely autonomous autonomous 
solar system chemicalsolar system chemical--free for drinking water disinfectionfree for drinking water disinfection and, 
additionally, elimination of potential organic pollutants at trace level.

Fixed catalyst Ahlstrom
patent, 1999 France

SOLWATER 
prototype 
at PSA

Applications
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Applications

1.PV panel
2.& 3. Solar 

Photo-reactor
4. Pump 
5. Electric box
6. Connections

1

3

5

4

6
2

Design of the final system for disinfection of drinking water

S. Malato et al., Review, Catalysis Today 122 (2007) 137-149.
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Final reactor systems in South-America and North-Africa

ESTF. Fez, MOROCCO Photo Energy Center. Cairo, EGYPT

IMTA. Morelos, MEXICO. CNEA. Tucumán, ARGENTINA

Applications
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Applications
SODISWATER project

Solar Disinfection of Drinking Water for Use in 
Developing Countries or in Emergency Situations

Partners:
1. RCSI        (IRELAND)
2. UU           (UK)
3. CSIR        (SOUTH AFRICA)
4. EAWAG    (SWITZERLAND)
5. IWSD       (ZIMBABWE)
6. CIEMAT    (SPAIN)
7. UL            (UK)
8. ICROSS    (KENYA)
9. USC         (SPAIN)

Objetive:
The objective of this project is the development 
of an implementation strategy for the 
adoption of solar disinfection of drinking 
water as an appropriate, effective and 
acceptable intervention against waterborne 
disease for vulnerable communities in 
developing countries without reliable access to 
safe water, or in the immediate aftermath of 
natural or man-made disasters. 

The main activity of PSA within this project is the development of a solar 
reactor to enhance the disinfection results of “batch” SODIS processes.
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Elimination of phytopathogens in water through photocatalytic 
processes: application for the water disinfection and reuse in 
recirculation hydroponic cultures

Applications

FITOSOL project

Main objetives:

• Study at laboratory scale of solar photocatalytic elimination of model 
phytopathogenic microorganisms in recirculation liquid nutrient solutions 
in soil-less cultures.

• Design and construction of a pilot solar reactor for disinfection of water 
containing the mentioned phytopathogenic organisms to reuse in 
recirculation hydroponic cultures.

• Demonstration of the photocatalytic process ability to disinfect water from 
nutrient solutions of hydroponic cultures.

Ankara University
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Future

1. Low-cost solutions for drinking water suply at house-hold level.

2. Use of AOPs (different to TiO2) for water disinfection.

3. Improve the knowledge on the disinfection mechanisms at 
microbiological level.

4. Investigate the effects of the disinfection treatment using 
infectifivity tests for pathogenic microorganisms.

5. Field trials of solar disinfection to better Health Impact 
Assessment of the technology.
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