

- Complex plants with processes of different nature (chemical, biological, mechanical)
- Complicated dynamics (time constants within a very extensive range)
- Varying objectives
- Frequently changing disturbances
- Some information essential for the operation cannot be quantified (smell, color, microbiological quality)
- Measurement problems (unreliable sensors, vague info)

- 2 Aerobic storage of readily biodegredable substrate
- 3 Anoxic storage of readily biodeg. substrate
- 4 Aerobic growth of heterotrophs
- 5 Anoxic growth of heterotrophs
- 6 Aerobic endogenous respiration of biomass
- 7 Anoxic endogenous respiration of biomass
- 8 Aerobic endo. respiration of storage products
- 9 Anoxic endo. respiration of storage products
- 10 -Aerobic growth of autotrophics
- 11 -Aerobic endog. respiration of autotrophs
- 12 -Anoxic endogenous respiration of autotrophs

ASM-	3 Soluble Components (S)
So	: Dissolved oxygen
S _O S _I	: Inert soluble organic material
S _S	: Readily biodegradable organic substrates
S _{NH}	Ammonium and ammonia nitr.
S _{N2}	: Dinitrogen
S _{NO}	: Nitrate ve nitrite nitrogen
S _{HCO}	: Alkalinity of wastewater

NITROGEN REMOVAL NITRIFICATION: (Autotrophic bacteria) Equation for Nitrosomonas: $55 \text{ NH}_4^+ + 76 \text{ O}_2 + 109 \text{ HCO}_3^ \rightarrow \text{ C}_5\text{H}_7\text{ O}_2\text{N} + 54 \text{ NO}_2^- + 57 \text{ H}_2\text{O} + 104 \text{ H}_2 \text{ CO}_3$ Equation for Nitrospira: $400 \text{ NO}_2^- + \text{ NH}_4^+ + 4 \text{ H}_2\text{CO}_3 + \text{HCO}_3^- + 195 \text{ O}_2^ \rightarrow \text{ C}_5\text{H}_7\text{ O}_2\text{N} + 3 \text{ H}_2\text{O} + 400 \text{ NO}_3$ DENITRIFICATION (Heterotrophic bacteria): $\text{NO}_3^- \rightarrow \text{ NO}_2^- \rightarrow \text{ NO} \rightarrow \text{ N}_2\text{O} \rightarrow \text{N}_2$

MASS BALANCES AROUND ACTIVATED
SUDDE SYSTEM**For non-aerated periods:** $\frac{dX_i^{at}}{dt} = \frac{Q_{in}X_i^{in} + Q_{rs}X_i^{rs} - (Q_{in} + Q_{rs})X_i^{at}}{V_{at}} + R_i$ **i components of ASM** 3 X_i^{rs} from settling model**Content endots (dissolved oxygen incorporated)** $\frac{dX_i^{at}}{dt} = \frac{Q_{in}X_i^{in} + Q_{rs}X_i^{rs} - (Q_{in} + Q_{rs})X_i^{at}}{V_{at}} + R_i + k_La(S_o^{sat} - S_o^{at})}$

Experimental

► 20 chicken farms were picked from the area

-- chicken population of 10 000 to 40 000

-- manure quantity between 2.4 -7.0 tons/day

Geographical coordinates, types, design capacity, operation capacity of the farms were recorded &

- geographic features of the land
- depth of well
- distance to the Derincay river
- ways and capacity of manure stocking
- number of chicken
- feeding type

were followed during a period of 8 months at 5 different times

	i				
Parameters	Chicken Farm 6	Chicken Farm 7	Chicken Farm 8	Chicken Far n 9	Chicker Farm 1
Coord. N	40° 33' 43.41"	40° 33' 46.00"	40° 33' 45.01"	45 84 ²	40° 32' 29,5
Coord. E	34º 53' 11.01"	34° 52' 59.54"	34º 52' 47.77"	34° 51' 18.91"	34º 55' 02.12"
Capacity (chicken)	10 000	10 000	10 000	28 000	10,000
Water well depth (m)	20	32	90	32	30
Distance from Derinçay (m)	3 000	2 000	3 000	1 200	800
Method of waste Storage	Hole	Hole	Hole	Hole	Hole
Amount of Waste (ten/day)	2	24	2	Characteris chicken	stics of some of farms

Parameters	Chicken Farm – 1						
Sampling date	22.11.2005	07.03.2006	05.04.2006	10.04.2006			
Ammonia, N (mg/L)	4,68	3,32	1,5	2,62			
Nitrite, N (mg/L)	0,024	0,015	0,027	0,009			
Nitrate, N (mg/L)	1,6	3,2	1,9	1,0			
Phosphate, (mg/L)	1,53	0,91	1,07	0,8			
рН	7,9	7,78	7,68	6,96			
Conductivity, (μS/cm)	2,49	2,17	2,21	1,989			
Salinity, (‰)	1,5	1,3	1,3	1,2			
Total dissolved solid, (mg/L)	1447	1248	1263	1140			
Turbidity, (FTU)	0	S O	0	1			
Total hardness (mg/L CaCO ₃)	142	142	142	142			
Total coliform (MPN/100 mL)	93	240	240	240			

where X(t) : biomass in the bioreactor
X(t) ; biomass in the bioreactor
S(t) : substrate
[DO](t) : dissolved oxygen
X _r (t) : biomass in the settler
[DO] _{max} : maximum dissolved oxygen, =10mg/l
D : dilution rate (assumed constant here)
S _{in} and [DO] _{in} : substrate and dissolved oxygen concentrations
in the influent
Y : biomass yield factor
M : biomass growth rate
μ _{max} : maximum specific growth rate
k _s and K _D : saturation constants
lpha : oxygen transfer rate
W : aeration rate
K ₀ : model constant
r and β : ratio of recycled and waste flow to the influent
Kinetic parameters: Y = 0.65; α = 0.018; K _{DO} = 2 mg/l; K ₀ = 0.
μ_{max} = 0.15 mg/l; k _s = 100 mg/l; r = 0.6

ALTERNATING AEROBIC ANOXIC SYSTEMS AND THEIR OPTIMIZATION IN ACTIVATED SLUDGE SYSTEMS

ASM	1-3 Soluble Components (S)
S _O S _I	: Dissolved oxygen
SI	: Inert soluble organic material
S _S	: Readily biodegradable organic substrates
S _{NH}	: Ammonium and ammonia nitr.
S _{N2}	: Dinitrogen
S _{NO}	: Nitrate & nitrite nitrogen
S _{HCO}	: Alkalinity of wastewater

Comparison of Algorithms			
Constraint handling algorithm	Rejection of infeasibles	Penalizing infeasibles	
Treatment	Proper	Proper	
Objective function (%)	55.04	58.07	
Energy savings (relative %)	17.44	12.90	
CPU time (hours)	68.00	65.36	

TREATMENT PERFORMANCE Objective function : 58.0 % Energy savings : 12.90 % Effluent **Treatment parameters** Discharge Inlet (24 hours) standards (g/m³) flow COD 125 260 37.42 Total nitrogen

25

125

Total suspended

solids

4.82

7.91

10

30

OVERALL EVALUATION ... holds promise for Nitrogen removal with no additional investment cost in existing plants Easy design and low investment cost for new plants Easy operation, and energy savings

OVERALL EVALUATION							
Objective function : 0.479 Energy savings : % 28.1 compared to the arbitrary aeration							
Treatment Parameters (g / m ³)	Inlet flow	Effluent	Discharge standards				
COD	260	33.7	125				
Total nitrogen	25	10	10				
Total suspended solids	125	0.17	30				

Ankara University, Turkey

A software **RSDS** (River Stream Dynamics and Simulation), coded in MATLABTM 6.5 has been developed to implement the suggested dynamic simulation and parameter estimation technique.

	Jinitial values of the state variables :
	Ammonia concentration mg/L 1.7
	Nitrite concentration mg/L
	0.18
Another view	Nitrate concentration mg/L
from the GUI	J 3.2 Organic-N concentration mg/L
	0.089
	Organic-P concentration mg/L
	0.085
	Dissolved-P concentration mg/L 2.05
	BODS mg/L
	15.6
	Dissolved Oxygen concentration mg/L. 7.95
	Coliform concentration mg/L
	4000
	Chloride concentration mg/L 0.07
	Algae concentration mg/L
	0.05
	OK Cancel
Ankara University	

State Variables	RSDS (% AAD)
Ammonia Nitrogen	2.86
Nitrite Nitrogen	29.59
Nitrate Nitrogen	2.71
Organic Nitrogen	9.01
Organic Phosphorus	2.09
Dissolved Phosphorus	1.89
BOD	5.49
Dissolved Oxygen	0.64
Coliform	6.87
Chlorine	20.19
Algae	4.97

	%AAD	
State Variables	RSDS	QUAL2E
Ammonia Nitrogen	9.2728	19.38
Nitrite Nitrogen	28.9094	76.40
Nitrate Nitrogen	3.6912	24.32
Organic Nitrogen	42.4853	11.80
Organic Phosphorus	9.4859	3.46
Dissolved Phosphorus	5.2614	6.92
BOD	1.6156	3.14
Dissolved Oxygen	1.0057	0.85
Coliform	7.2321	4.73
Chlorine	29.0589	23.19
Algae	0.4828	9.78

