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Outline
• What is Process Systems Engineering?
• Modelling
• Control 

– Fuzzy
– Artificial Neural Network
– MPC

• Optimization
• Monitoring river water quality
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Process Systems Engineering (PSE)

A combination of computer aided decision
support methods in

• Modelling
• Simulation
• Applied statistics
• Design
• Optimization
• Control

for an essentially unlimited set of process;
environmental, business and public policy
systems

Acceptance by 1st Int Symp. in Kyoto, ‘82

Problems that may be solved by PSE?!
• WWTPs need to be operated continuously despite

large perturbations in 
• Pollution load
• Flow

Constraints on effluent become tighter each year
• Eur. Directive 91/271 Urban Wastewater

• Many plants are either controlled manually
or NOT operated!

• ‘Data mining’
Abundant exp. data that need to be interpereted
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NOT AN EASY TASK !!!

• Complex plants  with processes of different 
nature (chemical, biological, mechanical)

• Complicated dynamics (time constants within a very 
extensive range)

• Varying objectives
• Frequently changing disturbances
• Some information essential for the operation 

cannot be quantified (smell, color, microbiological quality)

• Measurement problems (unreliable sensors, vague info)

Controlled
variables

• Dissolved oxygen conc.
• Ammonia & nitrate conc.
• MLSS concentration
• ∆ (BOD)

• Aeration rate
• Dilution rate
• Internal recycle flow rate
• Sludge recycle rate
• External carbon dosing

Manipulated
variables
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Suggested control strategies

• Simple feedback controller (usually PI)
• Fuzzy /neural network controller
• Model based controller
• …

Evaluation on the same basis important
COST Simulation Benchmark

COST Actions 624 & 682 
(Vrecko et al. Wat. Sci. & Tech. 2002)

Controller Converter
Final Control

Element PROCESS

Measuring
Device

Converter

+

-

Set point
(Target)

MODELLING
...the first step

• ASM1
• ASM2d
• ASM3
• COST Benchmark

• …

IWA
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ACTIVATED SLUDGE MODEL No. 3
(Gujer et al. 1999)

Correction for defects in ASM No.1
Storage of readily biodegradable substrate
Less dominating importance of  hydrolysis
Separation of conversion processes for
heterotrophs and autotrophs in aerobic and
anoxic state
Alkalinity correction in nitrification rate

13 components (soluble and particulate)
12 processes

ASM3’de KOİ AKIŞI

ASM-3 CONVERSION PROCESSES

SOSOSO

XS SS XSTO XH X I

SNH XA XI

SO SO

Endogeneous
respiration

Endogenous
respiration

Growth

Growth

Hydrolysis Storage

Autotrophic bacteria

Heterotrophic bacteria
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1 - Hydrolysis
2 - Aerobic storage of readily biodegredable
substrate
3 - Anoxic storage of readily biodeg. substrate
4 - Aerobic growth of heterotrophs
5 - Anoxic growth of heterotrophs
6 - Aerobic endogenous respiration of biomass
7 - Anoxic endogenous respiration of biomass
8 - Aerobic endo. respiration of storage products
9 - Anoxic endo. respiration of storage products
10 -Aerobic growth of autotrophics
11 -Aerobic endog. respiration of autotrophs
12 -Anoxic endogenous respiration of autotrophs

ASM-3 Soluble Components (S)
SO : Dissolved oxygen
SI : Inert soluble organic material
SS : Readily biodegradable organic

substrates
SNH : Ammonium and ammonia nitr.
SN2 : Dinitrogen
SNO : Nitrate ve nitrite nitrogen
SHCO : Alkalinity of wastewater
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ASM-3 Particulate Components (X)

XI : Inert particulate organic material
XS : Slowly biodegradable substrates
XH : Heterotrophic organisms
XSTO : Cell internal storage product of 

heterotrophic organisms
XA : Nitrifiying autotrophic organisms
XTS : Total suspended solids

REACTIONS

Oxidation and Synthesis (Heterotrophs) :

COHNS + O2+ nutrients → CO2 +NH3 +

C5H7O2N

Endogenous respiration:

C5H7O2N + 5 O2 → 5 CO2 + 2H2O + NH3+ 

energy
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NITRIFICATION: (Autotrophic bacteria)
Equation for Nitrosomonas :
55 NH 4 

¯ +76 O2+ 109 HCO3 
¯

→ C5H7O2N + 54 NO2 
¯ + 57 H2O + 104 H2 CO3

Equation for Nitrospira:
400 NO2 

¯ + NH4
+ + 4 H2CO3 + HCO3

¯ +195 O2 
→ C5H7O2N + 3 H2O + 400 NO3 

¯

DENITRIFICATION (Heterotrophic bacteria) :
NO3

¯ → NO2 
¯→ NO → N2O → N2

NITROGEN REMOVAL

MASS BALANCES AROUND ACTIVATED 
SLUDGE SYSTEM
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For non-aerated periods :

For aerated periods (dissolved oxygen incorporated):

i: components of ASM- 3 rs
iX from settling model
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STATE VARIABLES

73 dimensional vector
13 Concentrations of ASM-3 components

in aeration tank
7 solubles
6 particulates

60 Concentrations of particulate components
of ASM3 for each layer in settler

10 -Layer Settling Model
↓ Gravity settlingBulk movement ↑ ↓ Qi*X(1)/Ac

-

+                -
Jb(2)= Qi*X(2)/Ac Js(1)

- +

Jb(3)= Qi*X(3)/Ac +                -
Js(2)

Jb(7)= Qi*X(7)/Ac
(Qi+Qr)*Xti/Ac - +           Js(6)

- -
Jb(7)= Qr*X(7)/Ac Js(7)

+                 +   

- - Js(8)
Jb(8)= Qr*X(8)/Ac

Jb(9)= Qr*X(9)/Ac
+                 +    Js(9)

Qr*X(10)/Ac

1

2

7

8

10

Kynch (1951) flux theory
Total flux = Bulk flux + gravity

Bulk flux (Jb) =Q/Ac * Xss
Gravity flux (Js) =vs* Xss

Cylindirical geometry
No reaction
No concentration changes

in radial direction
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SETTLING VELOCITY MODEL (Takacs)

**

)( jpjh XrXr
S evevjv −− −= 00  

 
Sv  : settling velocity at layer j 

0
v  : maximum settling velocity 

hr  : settling parameter characteristic of hindered  settling zone 

pr  : settling parameter characteristic of  low solid concentration 
*
jX  : concentration difference between layer j and min. attainable 

Fuzzy logic: ’’computing with words rather than
numbers’’
Sentences based on empirical rules

Expert experience important

FUZZY CONTROLFUZZY CONTROL

CONTROL
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A set of ‘linguistic’ descriptors are established
(very high, high, low, true, false, OK)

Control rule, R:
If(

(BOD is Y1) and (MLSS is Y2) and (DO is Y3) and (N-NH3 is Y4)
then

(Ofeed is U1) and (R_sludge is U2)

Membership Function

Contribution of a control rule to the final control action:

σk = min{µk
1(BOD), µk

2(MLSS), µk
3(DO), µk

3(N-NH3)}

Values of membership functions corresponding to
the process outputs are computed from this array

Membership function of the jth controller output:

σk = max{σ1vj
1(Ofeed), σ2vj

2(R_sludge)}

Engineering values of the controller outputs (for driving actuators)  are

obtained from defuzzification of the output membership functions

(via ‘Center of Gravity’ or ‘Mean of Maximum’ methods)

Detailed examples can be found in 
Müller et. al. Water Research, 1997.
Manesis et. al. Artif. Intelligence in Engineering 1998. 

An accapetable generic knowledge base for WWTP control:

50 rules

(27 for stabilizing BOD, 11 for nitrification, 12 for denitrification
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Attempt to simulate the brain

key properties of biological neurons can be 
simulated to replicate the human LEARNING 
procedure

ARTIFICIAL NEURAL NETWORKSARTIFICIAL NEURAL NETWORKS

AREAS OF APPLICATION
Robotics Process control
Product design Operations planning
Quality control Real time modelling
Adaptive control Pattern recognition

Artificial 
neuron

Biological 
neuron

Neuron Activation Function
Dendrites Net Input Function
Cell body Transfer Function
Axon Artificial Neuron Output
Synapses              Weights
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Input

Set

Connecting signals
connection strenght // excitatory or inhibitory

Neurons
Input layer Output layerHidden layer

Output
Set

w a

Flow of activation

1000 
set

200
set

for TESTINGfor TRAINING

Industrial data

“TRAINING”
Adjusting connection strenghts

- Initialize as a blank state with random weights
- Excite with input
- Produce an output and compare with measured output
- Adjust the weights so that new output will be closer

“TESTING”
Once training is complete, testing the performance with

a new set of data
if performance is good on the novel set of data, then
LEARNING has occurred…

B
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…. actually an optimization problem
•Backpropagation
•Quickpropagation

•Levenberg-Marquardt
performans functions : MeanSE, SumSE, Root MeanSE
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Chen et al. J. Envir. Engng. 2001

- Neural fuzzy modelling & CONTROLLER
- Applied to a plant in Taiwan

Ko et al. Int. Workshop on Soft Computing… Provo, Utah, 2003
- Data from ASM2d
- 45 neurons in hidden layer

Poor generalization (testing) capability…

Raduly et al. Environmental Modelling and Software, 2007

- Influent dist. generator + mechanistic model
- Prediction on ammonia, BOD and TSSs good

COD and total nitrogen less satisfactory
ANN reduced simulation time by a factor of 36

Mostly modelling…       ANNs require expertise!...

SOME EXAMPLES OF ANN MODELLING FOR WWTPs
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AN ARTIFICIAL NEURAL NETWORK MODEL 
FOR THE EFFECTS OF CHICKEN MANURE 

ON GROUND WATER

Erdal Karadurmusa

Mustafa Cesmecib

Mehmet Yuceerc

Ridvan Berberd

aDepartment of Chemical Engineering, Hitit University, Corum, Turkey
bProvincial Directorship of Health, Corum, Turkey
cDepartment of Chemical Engineering, Inonu University, Malatya, Turkey
dDepartment of Chemical Engineering, Ankara University, Ankara, Turkey
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◘ ~ 400 chicken farms in the province of Corum

(an important source of ground water pollution in the area)

◘ Manure
transferred by means of pressurized water 
to the manure pool

penetrates into the ground water by

► runoff ► flooding ► diffusion

◘ Farms get water supply from 20 to 90 m deep wells

The problem ?

How to predict degree of pollution for major pollutant

constituents in ground water wells ?

► Identification of an input-output relationship between  

involved variables based on the field measurements

Artificial Neural Networks (ANN) are powerful tools that 

have the abilities to recognize underlying complex 

relationships from ‘input–output’ data only
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Motivation
Poultry manure could be a major source of ground 

water pollution in the areas where broiler industry is 

located

► extensive effects,   

when the farms use nearby ground water 

as their fresh water supply

Prediction of the extent of this pollution via

rigorous mathematical diffusion modeling 

experimental data evaluation

bears importance

Effects of chicken manure on ground water was investigated 
by artificial neural network modeling

An ANN model was developed for predicting the total 
coliform in the ground water well in poultry farms

Back-propagation algorithm was applied to training and testing the 
network

Levenberg Marquardt algorithm was used for optimization 

The model holds promise for use in future in order to predict 
the degree of ground water pollution from nearby chicken 
farms

In this work…
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Experimental
► 20 chicken farms were picked from the area 

-- chicken population of 10 000 to 40 000 
-- manure quantity between 2.4 -7.0 tons/day

Geographical coordinates, types, design capacity, operation 
capacity of the farms were recorded &  

• geographic features of the land 
• depth of well
• distance to the Derincay river
• ways and capacity of manure stocking
• number of chicken 
• feeding type 

were followed during a period of 8 months at 5 different times 

Characteristics of some of
chicken farms

25,622,42
Amount of 

waste
(ton/day)

HoleHoleHoleHoleHole
Method of 

waste
Storage

8001 2003 0002 0003 000Distance from
Derinçay (m)

3032903220
Water well

depth
(m)

10 00028 00010 00010 00010 000Capacity
(chicken)

34o 55’ 02.12”34o 51’
18.91”34o 52’ 47.77”34o 52’ 59.54”34o 53’ 11.01”Coord. E

40o 32’ 29.56”40o 32’
45.84”40o 33’ 45.01”40o 33’ 46.00”40o 33’ 43.41”Coord. N

Chicken
Farm 10

Chicken
Farm 9

Chicken
Farm 8

Chicken
Farm 7

Chicken
Farm 6Parameters
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Water samples were taken from the wells for measurements of 
► pH

► electrical conductivity
► salinity

► total dissolved solid
► turbidity

► nitrite nitrogen
► nitrate nitrogen

► ammonia nitrogen
► organic nitrogen

► total phosphor
► total hardness 

► total coliform

Experimental results for Farm - 1

24024024093Total coliform
(MPN/100 mL)

142142142142Total hardness
(mg/L CaCO3)

1000Turbidity, (FTU)

1140126312481447Total dissolved
solid, (mg/L)

1,21,31,31,5Salinity, (‰)

1,9892,212,172,49Conductivity,
(µS/cm)

6,967,687,787,9pH

0,81,070,911,53Phosphate, (mg/L)

1,01,93,21,6Nitrate, N (mg/L)
0,0090,0270,0150,024Nitrite, N (mg/L)

2,621,53,324,68Ammonia, N (mg/L)

10.04.200605.04.200607.03.200622.11.2005Sampling date
Chicken Farm – 1Parameters
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The analysis results were in the range of 

0.5 - 5.2 mg NO3-N/ L 
0.02 - 3.90 mg NH3-N/L 
0.51 - 1.89 mg total PO4/L
481 - 1852 mg/L total dissolved solids
93 - 1100 MPN/100 mL total coliform

Modelling Procedure
◘ ANN model was constructed by using the experimental observations 

as the input set in order to identify the possible effects of chicken 
manure resulting from the farms on the ground water

◘  Training Levenberg - Marquardt method

◘  Training accuracy,  # of secret layers, 
# of neurons in the hidden layer, # of iterations

5 hyperbolic tangent 
sigmoid neurons 4 logarithmic sigmoid 

neurons

1 linear 
neuron

trial and error
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Input data and the output data

- number of chickens in the farm considered, 
- depth of well where the measurements were taken
- type of manure management 
- quantity of manure 
- seasonal period of the year 

total coliform

were normalized and de-normalized before and after 
the actual application in the network

In
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O
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t

► Out of 80 data set, 60 were used for training 
&   20  for testing

► Performance function : 
Σ (ANN output  - Laboratory analysis results)

► Network was trained for 500 epochs 

► Computation was performed in MATLAB 7.0 environment
A MATLAB script was written, which loaded the data file, trained and 
validated the network and saved the model architecture

2
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Performance function (MSE) value is calculated about 0.01 for 500 epochs

► The model developed in this study aims at 
assessing the effects of chicken manure on 
the level of pollution in ground water 

► Thus the model was created by 
considering the total coliform concentration in 
the chicken manure on ground water as the 
output variable

RESULTS
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Training results

Figure 3 - ANN model for learning data

Testing results

Figure 4 - ANN model for test data

The network model captures the general trend in the output
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► Two statistical performance criteria for assesment; 

MAPE (Mean Absolute Percent Error)  
R (Correlation Coefficient)

As magnitudes of both errors were quite small for 
prediction of total coliform, this was considered as an 
indication of a reliably performing model

0.950.98Correlation Coefficient

0.387 %0.072 %MAPE

TestingTraining

► Developed ANN model predicts the possible amount 
of total coliform in the ground water well in poultry 
farms, when 

• number of chickens 
• depth of well
• management type of manure pool 
• quantity of manure and 

• month of the year are given

► Encouraged by the results, 
the model is expected to be of use in future for 
predicting the degree of ground water pollution from 
nearby chicken farms

CONCLUSIONS
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• At time k, solve the 
open-loop optimal 
control problem on-
line with x0=x(k)

• Apply the optimal 
input moves u(k)=u0

• Obtain new 
measurements, 
update the state and 
solve the OLOCP at 
time k+1 with 
x0=x(k+1)

• Continue this at each 
sample timeImplicitly defines the feedback law  u(k)=h(x(k))

MODEL PREDICTIVE CONTROLMODEL PREDICTIVE CONTROL

From our studies:

MPC of a WWTP
Consider a simple model  (Nijjari et. al. 1999, Caraman et. al. 2007).
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Assumptions
Steady-state regime 

(Fin = Fout = F,  D = F/V)
Recycled sludge : r F;  
Sludge removal :  β F
No substrate or DO

in the recycled sludge 

where 
X(t) : biomass in the bioreactor
S(t) : substrate
[DO](t) : dissolved oxygen
Xr(t) : biomass in the settler
[DO]max : maximum dissolved oxygen, =10mg/l
D : dilution rate (assumed constant here)
Sin and [DO]in : substrate and dissolved oxygen concentrations 

in the influent 
Y : biomass yield factor
M : biomass growth rate 
µmax : maximum specific growth rate 
kS and KD : saturation constants 
α : oxygen transfer rate 
W : aeration rate
K0 : model constant 
r and β : ratio of recycled and waste flow to the influent

Kinetic parameters: Y = 0.65; α= 0.018; KDO = 2 mg/l; K0 = 0.5; 
µmax = 0.15 mg/l; kS = 100 mg/l; r = 0.6
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NMPC simulation block diagram in MATLAB

Controlled variable: DO concentration,   Manipulated variable: Aeration rate
Prediction horizon : 5   Control horizon:1

Disturbance rejection
DOset = 7.5 mg/l, constant; Sin changes in time

Control effort
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Disturbance

Biomass

Substrate in effluent

Set point tracking
DOset from 7.5 to 5 for 100 hours; Sin = 200 mg/l

Control effort
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Some Recent Control Studies

• Chotkowski et al. Int. J. Systems Sci. 2005.
ASM2d with SIMBA software
NMPC and direct model reference adaptive
controller for nutrient and P removal

• Holenda et. al. Comp. & Chem. Eng. 2007.
COST benchmark model
MPC on two simulated case

• Caraman et al. Int. J. of Computers, 
Communications and Control, 2007.

• Fu et al. Envir. Mod. Soft. 2007.
Sewer system + WWTP + River model

(KOSIB – ASM1  – SWMM5 combined in SIMBA5)

Multiobjective optimization by genetic algorithm
Max DO  & Min NH3 in river, Min energy for piping & aeration

Aeration rate                 Influent substrate

Dilution rate                                                           Dissolved
oxygen

Recycled ratio
→ Effluent substrate →

DISTURBANCES
INPUTS OUTPUT

Storm tank - 1st clarifier - AS Reactor - 2nd clarifier
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Stare et al. Water Research 2007.
COST benchmark model
5 compartment (1 anoxic, 4 aerobic)
Manip. var.  : External C flow rate

DO set point
KLa (oxygen transfer rate)

O2 PI control
Nitrate & ammonia PI control
Nitrate PI & ammonia FF-PI control
MPC

Overall aim: reduction in operating cost
MPC effective in high influent loads

Operational map for O2 PI control
…importance of optimization

Min. OC

Operating 
costs

Max. effluent
ammonia 
conc.
(dash–dotted)

Max. effl. total 
nitrogen conc.

Stare et. al. 2007



31

Brdys et al. Control Engng. Practice, 2007
• Integrated ‘WWTP + sewer’ system
• 3 control layers:

– Supervisory (coordinates & schedules,selects control strat.)

– ‘Optimizing’ (LONG (w)/ MEDIUM (h)/ SHORT (m) term control duties)

with ‘soft switching’ in between

– Follow-up (Lower level controllers, hardware maneuv., PIDs)

• Applied to WWT system in Kartuzy, Poland

NOT in the sense of 
INTEGRATED ENGINEERING

i.e. providing set points…

OPTOPTIMIZATIONIMIZATION

CCONTROLONTROL

PROPROCESSCESS

Targets

Manipulated
variables

Disturbances

INTEGRATED PROCESS SYSTEMS ENGINEERING APPROACH 

Measurements

Measurements
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ALTERNATING AEROBIC ANOXIC 
SYSTEMS AND THEIR OPTIMIZATION

IN ACTIVATED SLUDGE SYSTEMS

Ankara University
Faculty of Engineering

Chemical Engineering Department
TURKEY

CHISA 2004, Prague, 25 August 2004

Saziye BALKU 
Ridvan BERBER

AAA

ACTIVATED SLUDGE SYSTEM

Wastewater Aeration tank Settler
Qi
X in Qi + Qr

Treated water
Xat Qeff

COD eff

TNeff
SS eff

Qr, Xr

Qw
Recycled sludge Excess sludge

SEQUENTIAL 
AERATION       

(on/off)
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SCOPE
Alternating Aerobic-Anoxic (AAA) systems

(carbon and nitrogen removal)
Main operational cost is due to

energy used by the aeration equipment
(operated consecutively as nonaerated/aerated manner)

Energy optimization is sought
by minimizing the

aerated fraction of total operation time

A A nonnon--trivialtrivial
dynamicdynamic optimizationoptimization problemproblem

STEPS OF THE STUDY
Selection of
– Activated sludge model (ASM-3)
– Settler model (Vitasovic, 10 layers)

• Settling velocity model (Takacs)

Mass balances; a general dynamic model for
activated sludge system
Simulation for start-up period
Optimal aeration profile for normal operation
period
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START-UP SIMULATION

With assumed constant aeration profile
(0.9 hrs non-aerated / 1.8 hrs aerated) 

for 20 days kLa : 4.5 h-1

Increase microorganism concentration
Improve settling
Determine initial values of state variables

ASM-3 variables during start-up

Heteotr organ.

Cell int. storage
products

Inert. part. org. mat.
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ASM-3 Soluble Components (S)
SO : Dissolved oxygen
SI : Inert soluble organic material
SS : Readily biodegradable organic 

substrates
SNH : Ammonium and ammonia nitr.
SN2 : Dinitrogen
SNO : Nitrate & nitrite nitrogen
SHCO : Alkalinity of wastewater

ASM-3 Particulate Components (X)

XI : Inert particulate organic material
XS : Slowly biodegradable substrates 
XH : Heterotrophic organisms
XSTO : Cell internal storage product of 

heterotrophic organisms
XA : Nitrifiying autotrophic organisms 
XTS : Total suspended solids
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OPTIMIZATION PROBLEM

)()( Xf
dt
dX 1=

)()( Xf
dt
dX 2= aerated periods

nonaerated periods

∑∑
==

+=
M

k

kk
M

k

k babJ
11

)(/min

s.t. mass balance equations

Soft

constraints

HARD CONSTRAINTS

Min. and max. lengths of 
non-aeration and aeration periods
Treated water discharge standards
Total operation time
Dissolved oxygen concentration
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Darwin’s natural selection principle
Genes: durations for non-aerated / aerated
periods
Chromosome (individual) : an aeration profile
Population:  pool of aeration profiles

Start from an initial population
Evaluate ‘fitness value’
Create a new generation

EVOLUTIONARY ALGORITHM (EA)

GENETIC OPERATORS

SELECTION (ranking and roulette wheel)
CROSS-OVER (mixing two individuals)
MUTATION (creating a new individual)
ELITISM (adding the best parent individual

to the new population)

CONSTRAINTS HANDLING METHODS
Rejection of infeasible individuals
Penalizing infeasible individuals
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EVOLUTIONARY ALGORITHM
Rejection of Infeasibles

START

Random initiation of population
NO

Genes satisfy boundaries? Replacement of genes
YES

Parent population

i=1
NO

RUN MODEL Rejection
Chromosomes satisfy constraints?

i+1YES

Evaluate objective function New population

i>n? GA operators
NOYES

STOP

Optimal chromosome

Elite

Optimal aeration profile 
(REJECTION)

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

periods

tim
e 

in
te

rv
al

 (h
r)
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Comparison of Algorithms

Constraint handling
algorithm

Rejection of 
infeasibles

Penalizing
infeasibles

Treatment Proper Proper

Objective function (%) 55.04 58.07

Energy savings
(relative %)

17.44 12.90

CPU time (hours) 68.00 65.36

ASM3 Components in Aeration Tank  
by optimal aeration profile
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Operation results by optimal aeration profile   _1

Operation results by optimal aeration profile    _2
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TREATMENT PERFORMANCE
Objective function : 58.0 %
Energy savings :  12.90 %

307.91125Total suspended
solids

104.8225Total nitrogen

12537.42260COD

Discharge
standards

Effluent
(24 hours)

Inlet
flow

Treatment parameters
(g/m3)

OVERALL EVALUATION

… holds promise for
• Nitrogen removal with no additional

investment cost in existing plants
• Easy design and low investment cost for

new plants
• Easy operation, and energy savings
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OPTIMIZATION BY SQP
Saziye Balku, Mehmet Yüceer & 

Ridvan Berber
Ankara University Faculty of Engineering

Based on “control vector parameterization”

Choose initial values for ak and bk, k = 1,....M
Initialize state variables
Integrate aerated and non-aerated models forward
in time starting from end of previous one
Evaluate the objective function
Solve nonlinear quadratic problem by SQP 
algorithm

Performed in MATLAB® 6.0 environment

Optimum Aeration Profile
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CHARACTERISTICS 
OF TREATED WATER

OVERALL EVALUATION

Objective function : 0.479
Energy savings : % 28.1

compared to the arbitrary aeration

300.17125Total suspended
solids

101025Total nitrogen
12533.7260COD

Discharge
standards

EffluentInlet
flow

Treatment
Parameters

(g / m3)
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MONITORING RIVER WATER 
QUALITY :

Modelling & Calibration Through
Optimum Parameter Estimation

Mehmet Yuceer 
Ridvan Berber

Dept. of Chemical Engineering
Faculty of Engineering

Ankara University, Turkey

Water quality models require large number of 
parameters to define functional relationships.

Since prior information on parameter values is limited, 
they are commonly defined by fitting the model to 
observed data. 

Estimation of parameters, which is still practiced by trial-
and-error approaches (i.e. manually), is the focal point

Motivation

Ankara University
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State of the art in river water quality modeling by 
Rauch et al. (1998) indicated 

2 out of 10 offer 
limited parameter estimation capability 

Mullighan et al. (1998) noted 
practitioners often resorted to manual 

trial-and-error curve fitting

Generally accepted software : EPA’s QUAL2E 
(Brown and Barnwell, 1987)

However, few practical problems 
such as the issue of parameter estimation
is missing...

Ankara University

Modeling : segment of river between sampling 
stations was assumed as ‘a CSTR’

What we have done...

We have suggested a dynamic simulation and parameter 
estimation strategy so that the heavy burden of finding 
reaction rate coefficients was overcome
(Karadurmus & Berber, 2004 a). 

Later extended to ‘series of CSTRs’ approach 
& a MATLAB-based user-interactive software 
was developed for easy implementation 
(Berber et al. 2004 b,c).

RSDS (River Stream Dynamics and Simulation)
Ankara University
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Fig5
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Q

xx , V

Qin
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Serially connected CSTRs are assumed to represent the 
behavior of river stream. 

Each reactor forms a computational element and is 
connected sequentially to the similar elements upstream and 
downstream such as shown in Figure 1. 

Assumptions employed for model development:
Well mixing in cross sections of the river
Constant stream flow & channel cross section 
Constant chemical and biological reaction rates 
within the computational element.
[ Similar to QUAL2E (Brown & Barnwell 1987) ]

Dynamic Model

Ankara University
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The model was constituted from dynamic mass balances 
for

different forms of nitrogen 
(organic, ammonia, nitrite, nitrate)  
phosphorus (organic and dissolved)
biological oxygen demand
dissolved oxygen 
coliforms
chloride
algae  

for each computational element

11 state variables

Ankara University

Just as an example;

Ammonia nitrogen:

where F1 is given by Brown & Barnwell (1987)

V
Q).N - (N A F - 

d
  N - N 1

0
111

3
1143

1 +⋅⋅⋅+⋅⋅= µασββ
dt

dN

31

1
1 ).1( NPNP

NPF
NN

N

−+⋅
= ⋅

Ankara University
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Organic phosphorus;

Carbonaceous BOD;

Physical, chemical and biological reactions and interactions 
that might occur in the stream have all been considered.

V
QPPPPA

dt
dP

).(.... 1
0

115142
1 −+−−= σβρα

V
QL). - (L  LK  -  LK - 0

31 +⋅⋅=
dt
dL

Ankara University

Model parameters, conforming to those in QUAL2E 
water quality model, were estimated by

Control vector parameterization combined
with Sequential Quadratic Programming 
(SQP) algorithms

by minimizing the objective function &

utilizing dynamic field data for
state variables collected

from two sampling stations

Parameter estimation

Ankara University
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the sum of squares of errors between the 
predicted and measured values for all of the 
state variables for a dynamic run

where 

x : computed value
xd : observed value  
n : total number of state variables  
m : total number of  observation points 

Computation was done in MATLAB 6.5 environment. 

( )∑∑
= =

−=
n

i

m

j
ijdij xxJ

1 1

2
,

Ankara University

Obj. function

Initialize state variables xi(0) & parametersθ(0)

Integrate dynamic model between t0 and tfinal with ∆t 
intervals, compute states variables (xi)

Optimization

Estimate new parameters (θm)

Calculate objective function (J)

Convergence
No Yes

θestimated

Model

SQP

Field
measurements
for x

Ankara University
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A software RSDS (River Stream Dynamics and Simulation), 
coded in MATLABTM 6.5 has been developed to implement 
the suggested dynamic simulation and parameter estimation 
technique.

Ankara University

Another view
from the GUI

Ankara University
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Dynamic Sampling and Analysis
Study area: Yesilirmak river around the city of Amasya in Turkey

Ankara University

Dynamic data collection 
for an element of 500 m  

MODEL CALIBRATION
dynamic simulation &
parameter estimation

Field data was collected for two cases:

Concentrations of 10 water-quality constituents, 

corresponding to the state variables of the model 

(indicative of the level of pollution in the river)

were determined in 30 minutes intervals either 

on-site by portable analysis systems, or 

in laboratory after careful conservation of the samples

Ankara University
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Starting from the 2nd sampling station described above, 
water quality constituents were determined at various 
locations along a 36.5 km long section of the river.

Just like dynamically keeping track of an element 
flowing at the same velocity as the main stream

Waste water of a baker’s yeast production plant nearby
was being discharged as a continuous disturbance...

Its effect on the water quality downstream

Observation and data collection 
for a 36 kms section of the river 

MODEL VERIFICATION & COMPARISON TO QUAL2E

Ankara University

Loading Point

763

2

1

5

4. after point source input , 7. km  7.  - 20. km
5.  - 11  km 8.  - 25 km
6.  - 15  km  9.  - 30  km     10.  - 36.5 km

1. before point source input
2. cooling water and wastewater inlet
3. after point source input

industrial wastewater 
of a baker’s yeast 
production plant

4 8 9 10
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Predictions from the RSDS are compared to field 
data for 36.5 kms section of the river after point
source

Profiles of the pollution variables (BOD,  DO, i.e.)

Results

Ankara University

Absolute Average Deviation (AAD)

N: Number of measurements, yexp: experimental value, ycal: calculated value

%AAD=Σ((|experimental value − calculated value|)
x100/experimental value )/no. of measurements )

(Thorlaksen et al. 2003)

( )
100*1%

1 exp

exp∑
=

−
=

N

i

cal

y
yy

N
AAD

Field Observation /Model 
Consistency

Criterion for quantitative evaluation

Ankara University
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Figure 2

RSDS (%AAD):  2.86

Figure 5

RSDS (%AAD):  9.01
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Figure 8

RSDS (%AAD):  5.49

Figure 9

RSDS (%AAD):  0.64
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4.97Algae
20.19Chlorine
6.87Coliform
0.64Dissolved Oxygen
5.49BOD
1.89Dissolved Phosphorus
2.09Organic Phosphorus
9.01Organic Nitrogen
2.71Nitrate Nitrogen

29.59Nitrite Nitrogen
2.86Ammonia Nitrogen

RSDS (% AAD)State Variables

Ankara University

%AAD

RSDS : 9.27

QUAL2E: 19.38

Results from COMPARISON to QUAL2E 

for a 7 kms section of the river (Berber et al 2004c)
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%AAD

RSDS : 1.62

QUAL2E: 3.14

%AAD

RSDS : 1.00

QUAL2E: 0.85
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QUAL2ERSDS

9.780.4828Algae
23.1929.0589Chlorine
4.737.2321Coliform
0.851.0057Dissolved Oxygen
3.141.6156BOD
6.925.2614Dissolved Phosphorus
3.469.4859Organic Phosphorus
11.8042.4853Organic Nitrogen
24.323.6912Nitrate Nitrogen
76.4028.9094Nitrite Nitrogen
19.389.2728Ammonia Nitrogen

%AAD
State Variables

Ankara University

Predictions from RSDS indicate good agreement with  
experimental data

systematic procedure suggested here provides an 
effective means for reliable estimation of model 
parameters & dynamic simulation for river basins 

contributes to the efforts for predicting the extent of 
the effect of possible pollutant discharges in river 
basins

helps make ‘environmental impact
assesment’ easier

Conclusions

Ankara University
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RSDS has been accommodated within a
Geographical Information System (ArcMap)

[Yetik, K., Yüceer, M. & Berber, R.  2007 - Unpublished]

GIS

MATLAB

“CENTRAL RIVER MONITOING AND 
POLLUTION CONTROL SYSTEM”

TÜBİTAK - 105G002

HİTİT UNIVERSITY 
FACULTY OF 
ENGINEERING

MUNICIPALITY OF  
AMASYA

ANKARA UNIVERSITY 

FACULTY OF ENGINEERING

Ministry of Environment & Forestry

Supported by TURKISH SCIETIFIC AND TECHNICAL RESEARCH COUNCIL
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Yeşilırmak Monitoring
Center ANKARA UNIVERSITY

Station Station

GPRS

OPTOPTIMIZATIONIMIZATION

CCONTROLONTROL

PROPROCESSCESS

Targets

Manipulated
variables

Disturbances

INTEGRATED PROCESS SYSTEMS ENGINEERING

Measurements

Measurements

THE FUTURE
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Thanks for your attention...

The work and contributions by
• Mehmet Yüceer
• Şaziye Balku
• Erdal Karadurmuş

are acknowledged…


