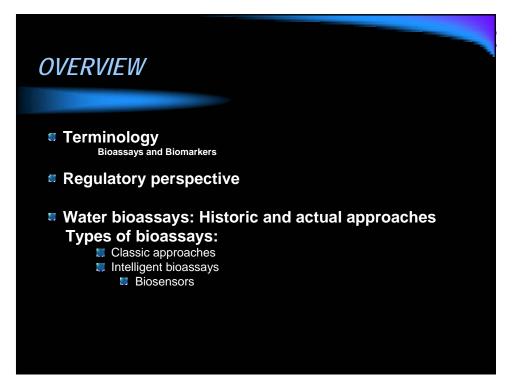
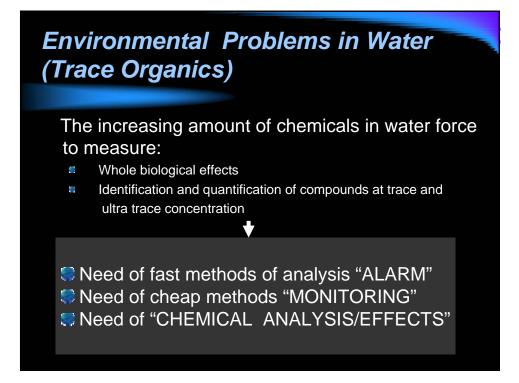
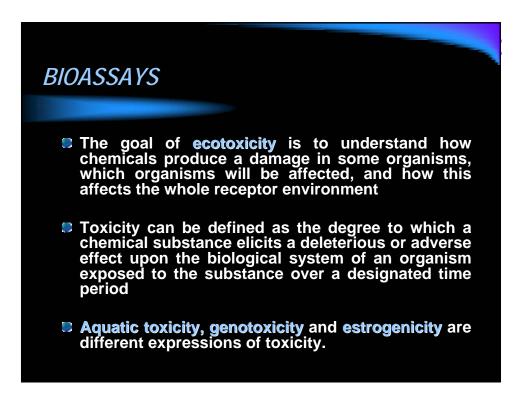
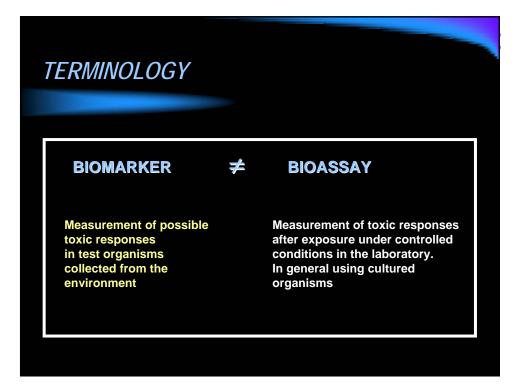
ECOTOXICITY IN WASTE WATERS AND NATURAL WATERS


Marinella Farré, CSIC Spain

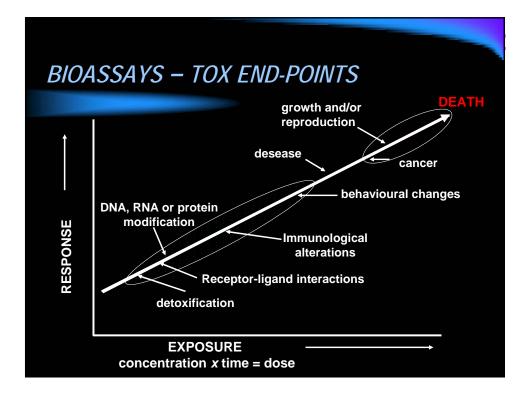

INNOVA-MED

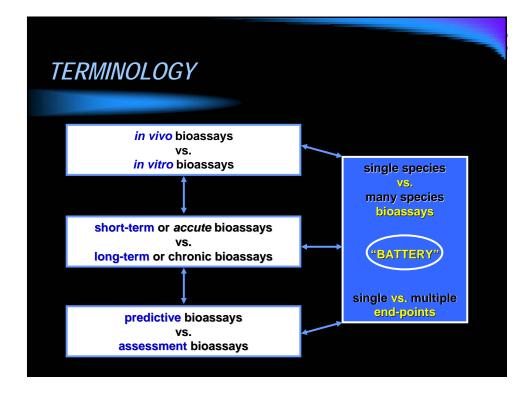

Course on Innovative Processes and Practices for Wastewater treatment and Re-use

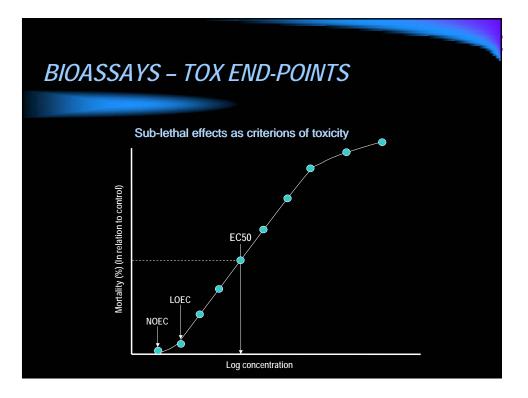
8-11 October 2007, Ankara University, Turkey




TOXICITY BIOASSAYS


Bioassays can provide a measure of the whole-effect, produce for a complex mixture integrating different factors, such as: pH, solubility, antagonism or synergism, bioavailability, etc.


The biological response induced by a substance in different test organisms is diverse.


The use of a battery of bioassays involving different species at different trophic levels is an efficient and essential tool for predicting environmental hazards to the aquatic ecosystem.

Regulatory persective – statutory pollution control

An ideal bioassay should be:

- Reliable and reproducible;
- Economical of time and resources;
- Able to yield statistically robust data;
- **Relevant**, practicable and readily understood by the layman;
- Able to utilize test organisms from a reliable stock;
- Simple to emulate;
- Regularly intercalibrated;
- With a clearly defined end-point;
- Sensitive to a wide range of pollutants.

EFFLUENT BIOASSAYS

Overview - the last 30 years ...

10 years ago

> 90% studies used predictive, single-species bioassays;

> 75% of acute tests; Mortality tests

J The most frequently used organisms:

- invertebrates (75%)

- fish (23%)

Ochronic and sub-lethal effects – less than 2% studies.

Today....Shift from the whole organism biotest to "micro-scale" tests and in vitro bioassays

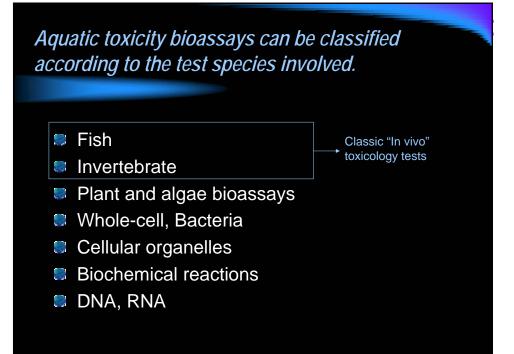
Rapid;

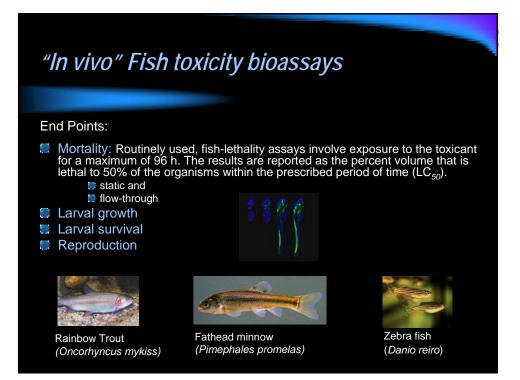
Less expensive;

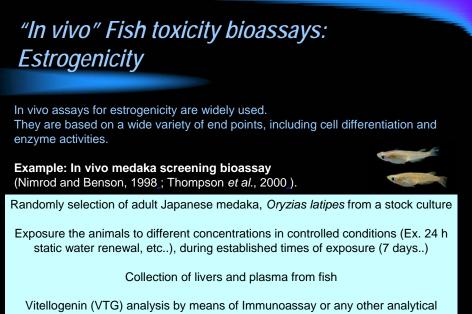
Suitable for screening;

Can be efficiently used to direct chemical analyses in the Toxicity Identification Evaluation (TIE) procedures (so-called Effects Directed Analysis – EDA);

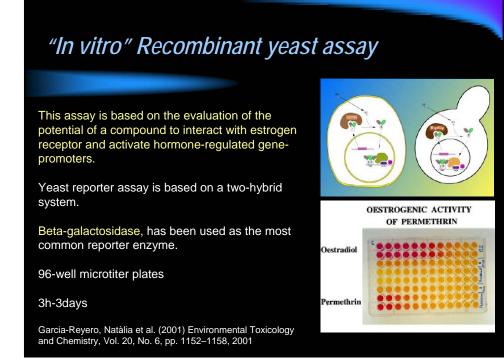
Implication of the Manimal testing" (Europe).

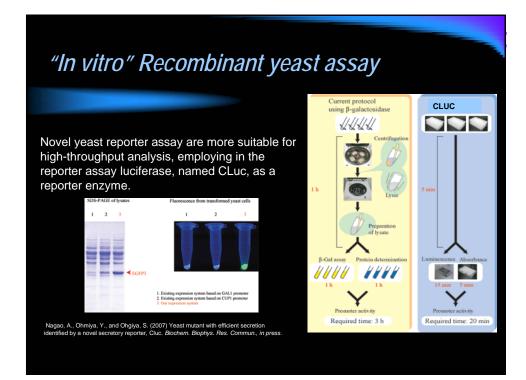

UK DTA – "The simplest predictable form of life should be used for ecotoxicity testing in direct toxicity assessment, i.e. bacteria, plants or invertebrates should be used instead of vertebrates."


Germany lab guidelines – DIN standardized fish microplate embryo toxicity test should be used instead of the whole organism fish toxicity test.

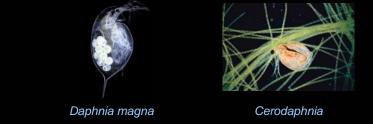

"In vivo" vs "In vitro"

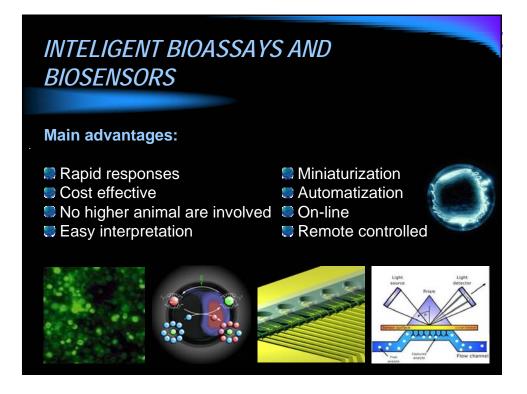
In vivo studies are very important both in the field and laboratory (for validation), they are based on a wide variety of end points, including cell differentiation and enzyme activities. However, it is not possible to use *in vivo* methods for routine or monitoring studies: ethical problems, expensive, time consuming, and big installations (aquariums,..) are neded.

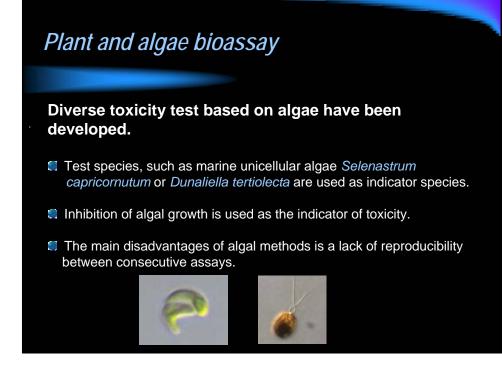

In vitro bioassays can be performed more quickly, these tests are much more cost-effectives than *in vivo* assays. However, *in vitro* assays are not able to explain all the mechanisms.



approach.

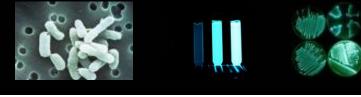



Invertebrate bioassays: Daphnids


Chronic toxicity test using macro invertebrates have been extensively used in aquatic risks assessment studies.

The parameters measured are mortality or reproduction

One of the most common invertebrate toxicity tests uses *Daphnia* and *Ceriodaphnia*, both freshwater species pertaining to *Cladocera*. Tests are carried out by exposing the test organisms to toxic substances under control conditions. Acute lethality tests with Daphnia conducted for 21 days are well established and standardized



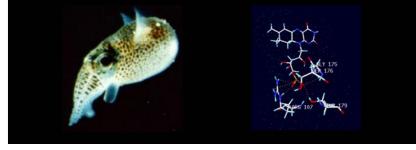
Bacterial toxicity assays

The more widely used bioassays in routine laboratories for evaluating water toxicity are based on inhibition of the bioluminescence of marine bacteria.

The better-known species of luminescent marine bacteria are *Vibrio fischeri* and *Photobacterium phosphoreum*, which naturally emit light due to an enzyme, the bacterial luciferase. Any substance that affects the bacterial metabolism produces a proportional inhibition of the luminescence.

Bacterial toxicity assays: Bioluminescence inhibition

The use of luminescence organisms to assess toxicity has been known for more than 40 years (Serat et al., 1965) ^[I]. In 1979 a toxicity bioassay using luminescent bacteria was developed by Bulich et. al. ^[II] to assess toxicity of wastewater effluents and industrial discharges. This technique allows the easy screening of large numbers of aqueous samples in a quick, reliable, and inexpensive way. This toxicity assay was commercialized for first time by Microtox and described in Beckman's Operating Manual ^[II].


During the last decade, interest has increased in the ecological characterization of real samples by means of combined protocols, involving **chemical analysis** and **toxicological evaluation**. These methods combine the advantages of the diagnostic methods, for which previous information about the sample is not necessary and report of an ecological global effect, and those of targeted quantitative analysis.

W.F. Serat, F. E. Budinger, P. K. Mueller. J. Bacterial. **90** (1965)832-833.
 A.A. Bulich, 1979. Use of luminescent bacteria for determining toxicity in aquatic environments, P. 98-106. In L. L. Markings and R. A. Kimerle eds, Aquatic Toxicology, ASTM 667. American Society for Testing and Materials, Philadelphia, PA.
 Beckman Instruments, Microtox system operating manual, Beckman Instruments, Inc., Carlsbad, CA, USA, 1982.

Bacterial toxicity assays: Bioluminescence inhibition

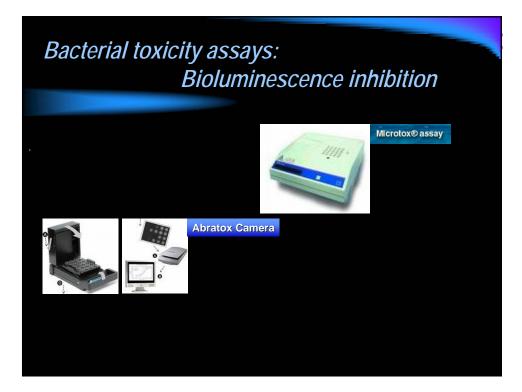
<u>Vibrio fischeri</u> is a common marine organism and can routinely be isolated from fresh fish.

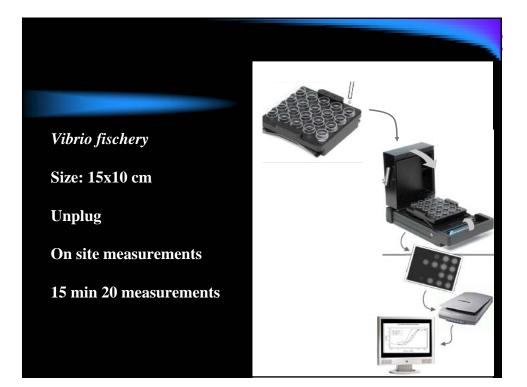
Photobacterium phosphoreum (*Vibrio phosphoreum*) is another type of marine bacteria. 1-7 day old colonies grown at 20 degrees Celcius, exhibit extremely bright luminescence.

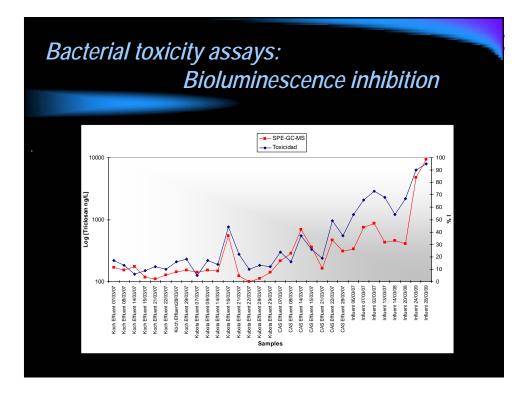
Bacterial toxicity assays: Bioluminescence inhibition

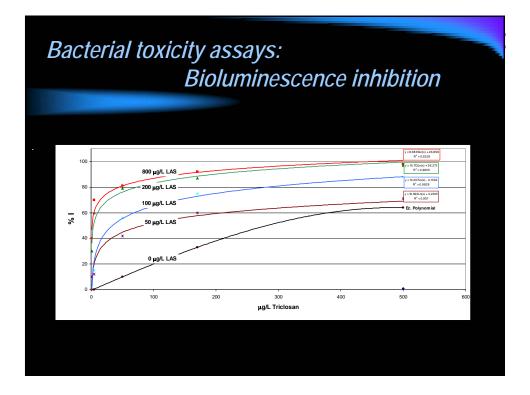
These marine bacteria naturally emits light, thanks to an enzyme the bacterial *luciferase*, which catalyses the following reaction:

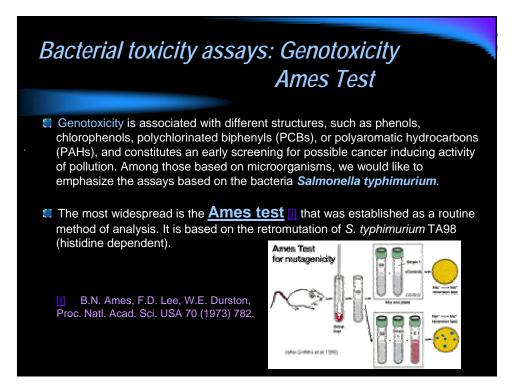
 $\mathsf{FMNH}_2 + \mathsf{O}_2 + \mathsf{R}\text{-}\mathsf{CO}\text{-}\mathsf{H} \longrightarrow \mathsf{FMN} + \mathsf{R}\text{-}\mathsf{COOH} + \mathsf{H2O} + \mathsf{LIGHT}$

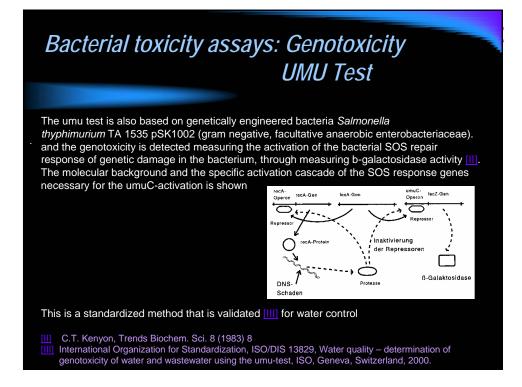

The light production is directly proportional to the metabolic status of the cell, and any inhibition of cellular activity is reflected in a decrease in bioluminescence.

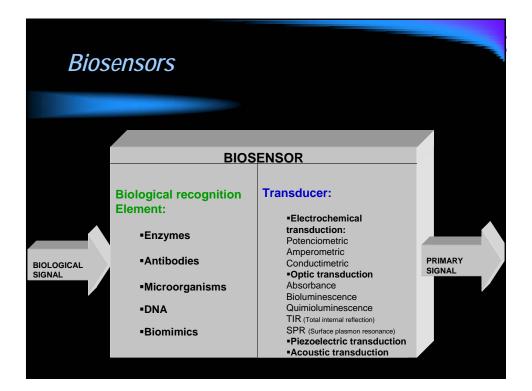

The inhibition percentage (%I) is determined by comparing the response given by a saline control solution to that corresponding to a sample.

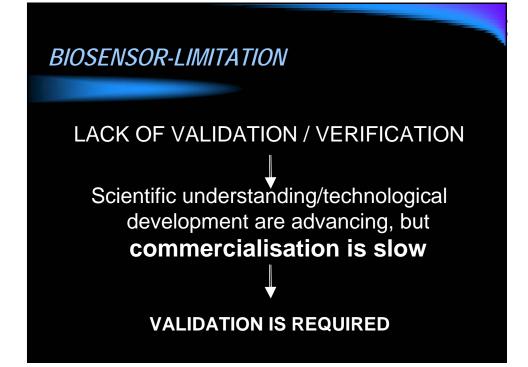


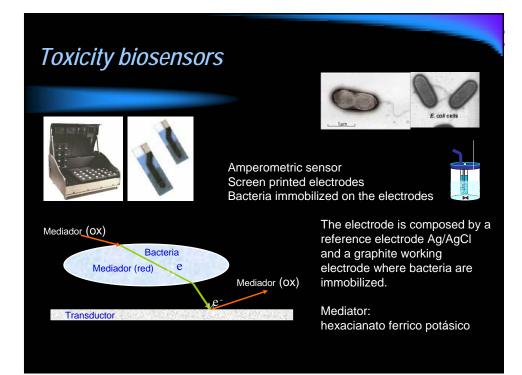

Bacterial toxicity assays: Bioluminescence inhibition

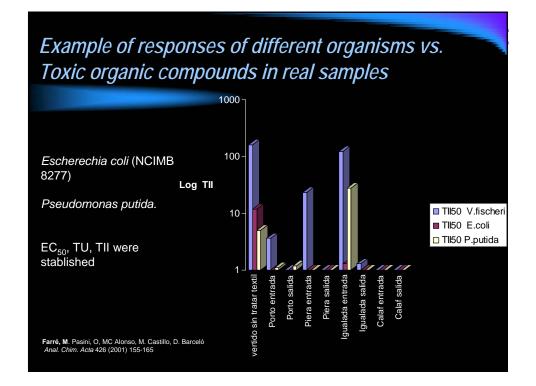

- Toxicity is expressed as EC₅₀ which is the effective concentration of a toxic substance producing the 50% of light reduction.
- Luminescence tests have the advantage of being rapid, sensitive and reproducible.
- This is a standard method for aquatic toxicity
- *V. fischeri* is a marine bacteria so, for the good performance of the should be carried out using a 2% of saline solution.
 Because of the salinity, the insolubility of some organic substances is enhanced, thus producing turbid solutions.

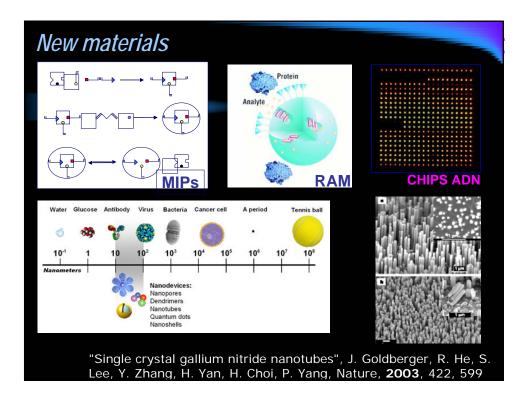




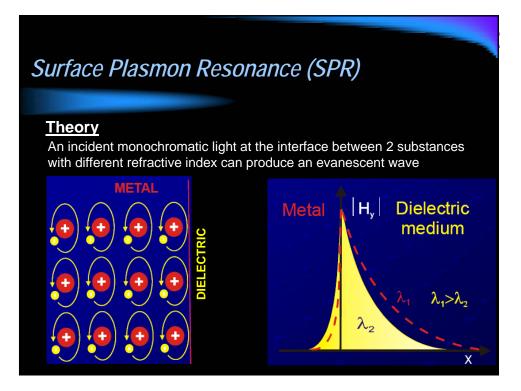


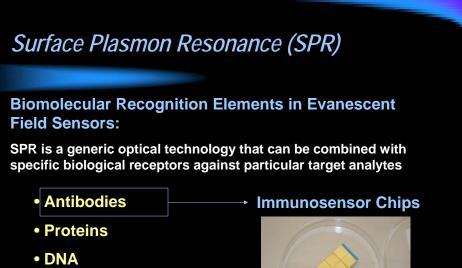




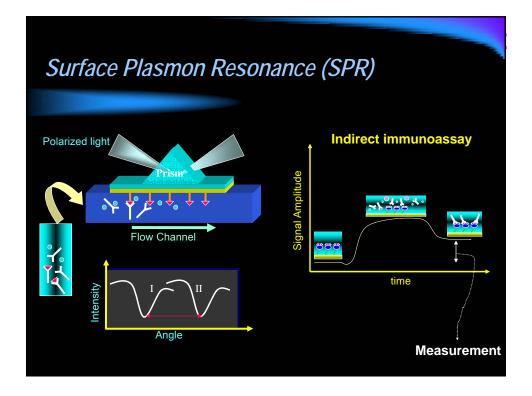


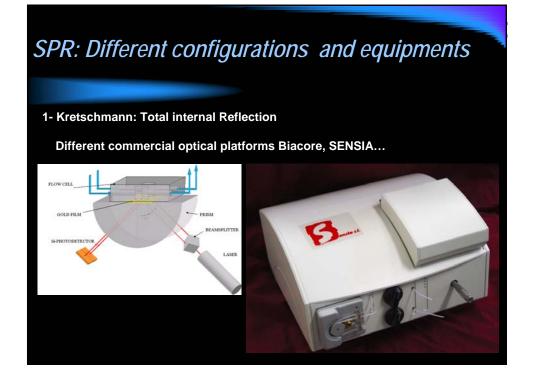


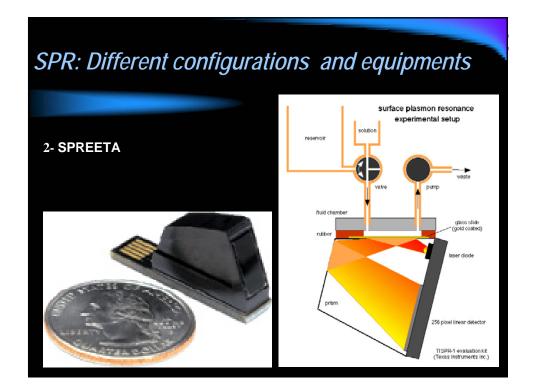




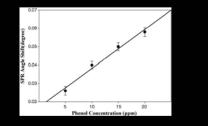
RECENT ACHIEVEMENTS


- 1 New Optical Devices for target pollutants and biological effects: SPR
- 2 Mass measurements for environmental applications: Quart crystal microbalance
- 3 Sensors arrays
- 4 Miniaturized Electrochemical devices for biological effects: DNA, Enzymes

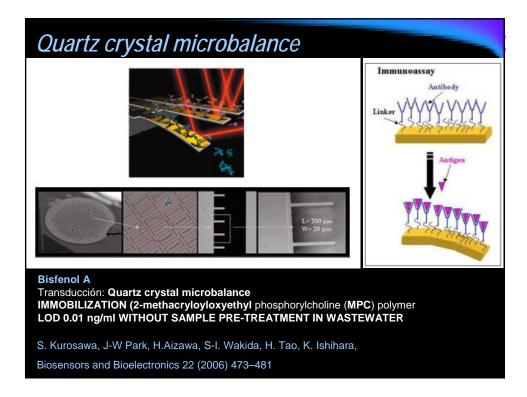




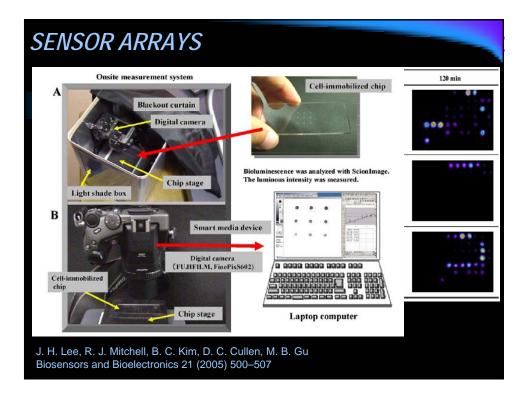
- RNA
- MIPs (plastibodies)

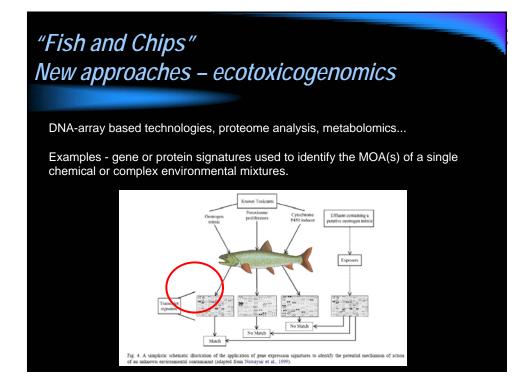

SPR: Examples

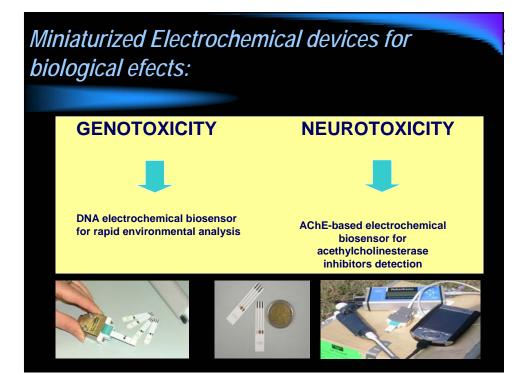
Sample	SPR µg/L	SPE- HRGC/MS µg/L	Sum of Triazine µg/L
1	0.05	0.05	0.25
2	0.10	0.08	0.13
3	1.00	0.82	1.07
4	0.26	0.24	0.46
5	0.22	0.19	0.51
6	0.20	0.20	0.59
7	0.11	0.07	0.27

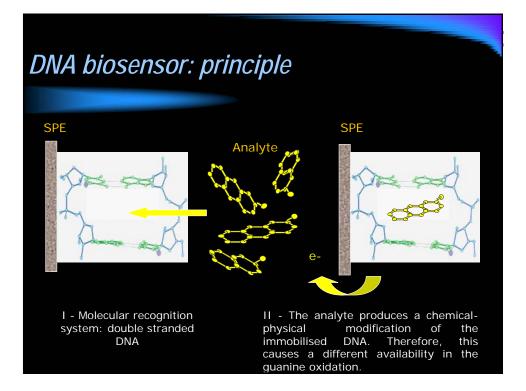

IC50 = 0.17 LOD = 0.02 ppb = 20 ng/L 15' without sample enrichment

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M⁸. P Marco, D. Barceló-Analytical and Bioanalytical Chemistry. (2007) The immobilized cell using self-assembled synthetic oligopeptidewas applied to the biological toxicity detection of environmental pollutant.

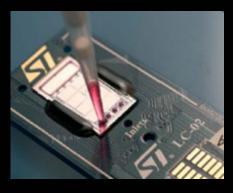

Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for the immobilization of *Escherichia coli* O157:H7 on gold (Au) substrate.



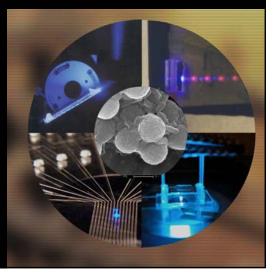

Jeong-Woo Choi*, Kwang-Won Park, Doo-Bong Lee, Woochang Lee, Won Hong Lee Biosensors and Bioelectronics (2005)



SENSOR AR	RAYS				
			0 min	10 min 30 min	60 min 120 min
		Para	quat		
Toxicity measurements using more than 20 different bacterial species genetically		Mitoms	ycin C		
modified using the operation		Salicyli	ic acid		
Bacteria immobilized on	sensor chip	Inter	asity Low		High
Strains used in th	is study				
Strain	Plasmid	Host	Strain	Plasmid	Host
DS1	$pSodALux(Xl^{a})$	RFM443 ^b	DK1	pKatGLux(Xl)	RFM443
DDI	pPqi-5Lux(Xl)	RFM443	NagK	pNagRLux(Vf)	P.putidaKCTC1768
DP1		RFM443	TV1061	pGrpELux(Vf)	RFM443
EBSoxR	pSoxRLux(XI)	D TD () ()	BOI		DTD (1112
EBSoxR EBFumC	pFumCLux(Vf)	RFM443	DC1	pClpBLux(XI)	RFM443
EBSoxR EBFumC EBSoxS	pFumCLux(Vf) pSoxSLux(Vf)	RFM443	DO2	pClpBLux(Xl) pOmpTLux(Xl)	RFM443
EBSoxR EBFumC EBSoxS EBInaA	pFumCLux(Vf) pSoxSLux(Vf) pInaALux(Vf)	RFM443 RFM443	DO2 BM401	pClpBLux(Xl) pOmpTLux(Xl) pLuxRLux(Xl)	RFM443 RFM443
EBSoxR EBFumC EBSoxS	pFumCLux(Vf) pSoxSLux(Vf)	RFM443	DO2	pClpBLux(Xl) pOmpTLux(Xl)	RFM443
EBSoxR EBFumC EBSoxS EBInaA EBHmp	pFumCLux(Vf) pSoxSLux(Vf) pInaALux(Vf) pHmpLux(Vf)	RFM443 RFM443 RFM443	DO2 BM401 GC2	pClpBLux(XI) pOmpTLux(XI) pLuxRLux(XI) pLacLux(XI)	RFM443 RFM443 RFM443
EBSoxR EBFunC EBSoxS EBIanA EBHmp DPD1710	pFumCLux(Vf) pSoxSLux(Vf) pInaALux(Vf) pHmpLux(Vf) pRecALux(Vf)	RFM443 RFM443 RFM443 JC76235	DO2 BM401 GC2 DRP1	pClpBLux(Xl) pOmpTLux(Xl) pLuxRLux(Xl) pLacLux(Xl) pRpoSLux(Xl)	RFM443 RFM443 RFM443 W3110 ⁴
EBSoxR EBFunC EBSoxS EBInA EBHmp DPD1710 EBJM2 DPD2540 * 17; fax genes * The genotype < The genotype	pFumCLux(I'f) pSoxSLux(I'f) pInaALux(I'f) pHmpLux(I'f) pRecALux(I'f) pGltALux(XI)	RFM443 RFM443 JC7623 ^c RFM443 genes are from Xenorhal talK2, lac Δ74). , recB21, sbcB15, sbcC20	DO2 BM401 GC2 DRP1 Kan3 RFM443 dus huminescens.	pClpBLux(Xl) pOmpTLux(Xl) pLuxRLux(Xl) pLacLux(Xl) pRpoSLux(Xl) pRpoSLux(Xl)	RFM443 RFM443 RFM443 W3110 ⁴ W3110
EBSoxR EBFunC EBSoxS EBInA EBHmp DPD1710 EBJM2 DPD2540 * 17; fax genes * The genotype < The genotype	pFuncLux(II) pSoxLux(II) pInaLux(II) pImpLux(II) pRodLux(II) pRodLux(II) pRodLux(II) pRodLux(II) are from Ibirio fachers J. Junc e of RFM443 in (rpL - (StR), g of OL7623 is (AB157, rec22) of W3110 is (F - lam-in (rrnD-	RFM443 RFM443 RFM443 JC7623 RFM443 RFM443 genes are from Xenorhal talK2, lac Δ 74). reeB21, sbcB15, sbcC20 rrnEJ1 rph-J).	DO2 BM401 GC2 DRP1 Kan3 RFM443 whus huminescens. DI).	pClpBLux(Xl) pOmpTLux(Xl) pLuxRLux(Xl) pLacLux(Xl) pRpoSLux(Xl) pRpoSLux(Xl)	RFM443 RFM443 RFM443 W3110 ⁴ W3110



The Future of Biosensors for Environmental Monitoring in EU


- Integration of different technologies
- Complementary measurements
- Reduced size equipments
- Lab on a chip
- Remote control

Acknowledgments

We would like to thanks the European Union through the project **INNOVA-MED** and by the Spanish Ministry of Education and Science through the project **CEMAGUA**.

THANK YOU FOR YOUR ATTENTION

