Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry

M. Viana a,⁎, A.S. Fonseca b, X. Querol a, A. López-Lilao c, P. Carpio c,d, A. Salmatonidis a, E. Monfort c

a Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Spain
b National Research Centre for the Working Environment (NRCWE), Lersø Parkallé 105, 2100 Copenhagen, Denmark
c Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Ripollet, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
d Institute of Materials Technology (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

HIGHLIGHTS
• Atmospheric plasma spraying generates substantial ultrafine particle emissions.
• Emissions impact workplace exposure significantly in the breathing zone.
• Emissions are process-dependent, not material-dependent.
• Engineered nanoparticle emissions were also detected.
• Mitigation strategies are efficient in reducing impacts on workplace exposure.

ABSTRACT
Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100 nm) and nanoparticles (<50 nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10 nm–20 μm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3 × 10^6/cm^3) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3 × 10^5/cm^3). Environmental release of UFPs was also detected (3.9 × 10^5/cm^3, outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thermal spraying in general and atmospheric plasma spraying (APS) in particular are frequently used technologies to produce high-performance surfaces required in industrial processes. APS is used to deposit different coatings on a number of surfaces in order to achieve enhanced properties such as wear, corrosion, electrical insulation or heat resistance, while maintaining the structural properties of the underlying material (Fauchais et al., 2014; Rosso et al., 2001; Stöver and Funke, 1999). Atmospheric plasma spraying is commonly employed because of its versatility and wide applicability in diverse technologies such as coating of stainless steel components (e.g., pistons) to prevent wear and corrosion in pump applications, coating of metal structures (e.g., turbine engines and blades) to obtain ceramic thermal barriers in aero-spatial and energy-generation applications, or rapid manufacturing of metal molds without limitation of pattern size, among others (Carpio et al., 2015a,b,c; Huang et al., 2016; Khor and Gu, 2000; Montanari et al., 2002; Olding et al., 2001; Tamulevičius and Dargis, 1998; Zhang et al., 2001).

During thermal spray deposition, the feedstock (starting material) is molten (or partially molten) and accelerated to impact onto the substrate surface, where the deposited material is cooled forming the coating. In the case of APS, the energetic source is a thermal plasma which achieves high impact velocities and very high temperatures (>10,000 K). Plasma spraying can provide coatings with varying thickness over a large area at high deposition rate, which makes it advantageous with regard to other coating processes such as physical or chemical vapour deposition (Pappyrin et al., 2007; Pawłowski, 1995). Another advantage is that the coated surface does not heat up significantly, allowing the coating of flammable substances. Furthermore, the high energy density and high temperature of plasma flow facilitate the deposition of coatings of refractory materials which are difficult to melt using other conventional thermal spraying techniques (Fauchais et al., 2014). Coating materials available for plasma spraying include metals, alloys, ceramics, plastics and composites, which are typically fed in micron-sized powder form. The use of nanoparticles (<50 nm, NPs) as a feedstock can improve the properties of the coatings (Pawłowski, 2009). However, nanoparticles cannot be injected directly inside the plasma plume because of their poor flowability and low mass. For this reason, the injection of suspensions (containing submicron- or nano-sized particles) instead of micron-sized powders has been implemented in recent years. This modification is named suspension plasma spraying (SPS) and the phenomena (fusion, evaporation, particle trajectory, etc.) which occur inside the plasma plume change significantly with respect to the APS technique (Pawłowski, 2009).

High-energy industrial processes similar to plasma spraying are known to release NPs and ultrafine (<100 nm, UFP) particles into workplace air (Fonseca et al., 2015, 2016a). These particles are usually referred to as process-generated particles (Broekhuizen et al., 2012), and they have the potential to impact indoor air quality, workplace exposure and human health (Héraud-Kraemer et al., 2003; Li et al., 2016). Studies have shown that one thermal spraying technique similar to plasma spraying, high velocity oxy-fuel (HVOF) spraying, may even generate emissions of large dust particles above 10 μm in size (Huang et al., 2016). In addition to process-generated particles, workplace exposure may be affected by the unintentional release of engineered NPs (ENPs). The use of nanomaterials in state-of-the-art industrial processes such as APS has increased in recent years, and it is expected that this trend will continue in the near future (Savalainen et al., 2013). Consequently, it is critical to identify any potential risks they may pose to human health in indoor, workplace and outdoor environments in the vicinity of the industrial emission source (Chadwick et al., 1997; Héraud-Kraemer et al., 2003). The evaluation and characterisation of exposure scenarios and risks to airborne UFPs (whether process-generated or engineered) are addressed by the field of research of nanosafety (Faghihi and Morawska, 2016; Savalainen et al., 2013), and is addressed in the framework of the NanoSafetyCluster Research Regulatory Roadmap 2017 (Stone et al., 2017). The need for effective risk governance, which is crucial when developing new technologies and industrial processes, has been evidenced (Read et al., 2016).

In this framework, the present work aimed to characterise UFP emissions and their potential impact on workplace exposure concentrations during atmospheric plasma spraying of ceramic coatings in an industrial setting. UFP release to the environment was also assessed. Moreover, a prevention protocol was implemented and the exposure levels reduction was quantified. Because of the different terminologies used in the air quality and the nanotechnology research fields, for the purpose of this work the following terms will be used: ultrafine particles (<100 nm), and nanoparticles (<50 nm). Particle diameters measured in this work are mainly submicron, but given that approximately 80% of particle number concentrations (N) is generally <100 nm (Hinds, 1999), the term UFP will be used as equivalent to N even if they are not exactly the same.

2. Experimental setup

Atmospheric plasma spraying was carried out in an industrial-scale pilot plant located in the facilities of the Institute of Ceramic Technology (ITC) in Castellón, Spain. The APS system consisted in a monopolar plasma torch (F4-MB, Oerlikon-Metco, Switzerland) operated by a six-axes robot arm (IRB 1400, ABB, Switzerland). Due to standard operational health and safety considerations, plasma spraying in the pilot plant is performed inside a closed chamber, with no direct interaction by the worker (Fig. 1, and S1 in Supporting Information). The plasma spraying chamber (3 × 3 × 2.5 m³) was located inside the worker’s room (approximate dimensions 6 × 6 × 3 m³), where the breathing zone was located at approximately 1.5 m from the spraying chamber.

A total of 14 APS processes were carried out, 9 of which using micron-sized powders and 5 using aqueous suspensions containing submicron- or nano-sized particles as feedstock (Table 1). The following particle monitoring instrumentation was deployed:

- In the worker’s room, outside the spraying chamber (Fig. 1, Zone A, and Fig. S1): a DiscMini particle counter (Testo) monitoring particle number concentrations (N) between 10 and 700 nm and mean particle diameter (Dm) with 10-second time resolution was deployed next to the worker’s desk, at breathing height but not strictly within the breathing zone (Ojima, 2012). Appropriate conductive tubing (Asbach et al., 2016; Viana et al., 2015) was used. A butanol condensation particle counter (CPC, TSI Model 3775), monitoring particles between 4 and 1500 nm with 60 s time resolution, was also used. Particle mass concentrations were monitored by means of a Grimm 1.108 laser spectrometer (Grimm GmbH), size fractioned particle mass concentrations from 0.3 to 20 μm (within 15 channels) and integrated values of PM10, PM2.5 and PM1 concentrations (1 min time resolution). The Grimm laser spectrometer was previously calibrated by comparison with an EU-reference high-volume sampler with outdoor air urban aerosols. Thus, calibration was not performed with the specific aerosol under study (workplace aerosol), and this should be considered a limitation. Particle samples for TEM-EDX analysis were collected on Au grids using SKC cassettes attached to a Leland Legacy pump (also SKC) operating at 6 L/min (sampling over 10–15 min intervals, covering one entire experiment).
- Inside the plasma spraying chamber (Fig. 1, Zone B, and S1): N concentrations were monitored using a second DiscMini (Testo) unit (same time resolution as above). Particle number size distributions between 10 and 420 nm were monitored by means of a portable TSI SMPS NanoScan (Fonseca et al., 2016b; Stabile et al., 2014; Tritscher et al., 2013) (1-minute resolution), which was placed for safety reasons outside of the spraying chamber and connected with conductive tubing (Tygon conductive tubing, 1.5 m in length) to the inside of the chamber. Because the length of the tubing may result in particle losses, these were corrected for by using a simplified laminar flow penetration theory in a circular tube (Hinds, 1999). For particles from 10 to 420 nm,
the losses were calculated to be <5%. Samples for the characterisation of particle morphology and composition by TEM-EDX were collected using a 3-stage impactor (1–2.5 μm, 2.5–10 μm, and >10 μm) using Au grids as collection substrates (sampling over the entire duration of each experiment).

- Outdoor air: a third DiscMini (Testo) unit and a Grimm 1.107 (Grimm GmbH) unit measuring PM10, PM2.5 and PM1 concentrations were deployed outdoors on the building’s roof and at approximately 1 m from the ventilation exhaust originating from the worker’s room, to monitor N, Dp, PM10, PM2.5 and PM1 (same time resolutions as indoors). The instruments were located as close as possible to the exhaust (taking into account the operational limitations) while avoiding interference from other exhaust systems. The inlets were not located inside the exhaust to avoid instrumental failures, since these instruments are not adapted to work in duct streams.

Laser spectrometers were exclusively used for experiment #1 due to unavailability in further experiments. All DiscMini and Grimm 1.107 and 1.108 units were intercompared with their respective reference instrumentation prior to the experiments at the IDAEA-CSIC urban background air quality monitoring station in Barcelona, monitoring outdoor air. One DiscMini was identified as the internal reference, and the other units were corrected (with slope and intercept) with regard to it. Correlation coefficients (R^2) between the different units were always >0.8. The Grimm 1.107 and 1.108 laser spectrometers were corrected individually by comparison with EU reference high-volume samplers (MCV, S.A.) for PM10 and PM2.5 mass concentrations (even if not with the target aerosol, see above). The DiscMini particle counters were also compared by comparison with EU reference high-volume samplers (MCV, S.A.) for PM10 and PM2.5 mass concentrations (even if not with the target aerosol, see above). The DiscMini particle counters were also compared with a TSI SMPS3080 system coupled with a TSI CPC3772 and showed a $R^2 > 0.88$ correlation with regard to N and a 12–18% relative difference with regard to D_p (Viana et al., 2015). The particle number concentration data were not corrected with regard to the SMPS given the different lower cutoff sizes of the DiscMini units and SMPS system. Finally, the TSI butanol CPC was intercompared with the DiscMini units on site during a non-activity period (night-time), obtaining a correlation of $R^2 = 0.87$. The CPC data were not corrected with regard to the DiscMini units due to their different cutoff sizes, as in the case of the SMPS. The different particle size ranges of the instruments (10–700 nm for DiscMini, 4 nm to 1.5 μm for CPC) and their operating principles should be taken into account when intercomparing the different types of instruments.

Different feedstock types were tested in order to assess their influence on UFP emissions (Table 1), including:

- Powders:
 - Feedstock P1: ceramic glass powders made up of Na2O, SiO2, CaO, and P2O5. Its size distribution was micron-sized (63 μm) with 1% of fluidized SiO2 NPs (Cañas Recacha et al., 2016).
 - Feedstock P2: commercial micron-scaled powder of a Ni-based superalloy (AMDRY 997, Oerlikon-Metco, Switzerland) with a mean particle size of 40 μm.

- Suspensions:
 - Feedstock S1: aqueous suspension containing a mix of lab-synthesized nano-sized particles of Gd2Zr2O7 (60 nm) and submicron-sized particles of ZrO2-Y2O3 (Tosoh TZ-3YS, 400 nm).
 - Feedstock S2: aqueous suspension containing nano-sized particles (Gd2Zr2O7).
 - Feedstock S3: aqueous suspension containing submicron-sized particles (ZrO2-Y2O3).

In order to reduce the exposure levels after they were detected (Section 3), mitigation strategies were implemented according to a hierarchical prevention protocol:

- Stage 0: The APS system worked as it was set up by the manufacturer. Plasma spraying took place inside a cabin (spraying chamber) with an

<table>
<thead>
<tr>
<th>Experiment (date)</th>
<th>Feedstock</th>
<th>Grain size (feedstock)</th>
<th>Composition</th>
<th>Replicas</th>
<th>Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (31/10/14)</td>
<td>P1</td>
<td>Micro</td>
<td>Na2O; SiO2; CaO; P2O5 (1% nano)</td>
<td>1</td>
<td>Stage 0</td>
</tr>
<tr>
<td>#2 (17/12/14)</td>
<td>P1</td>
<td>Micro</td>
<td>Na2O; SiO2; CaO; P2O5 (1% nano)</td>
<td>4</td>
<td>Stage 1</td>
</tr>
<tr>
<td>#3 (17/12/14)</td>
<td>P2</td>
<td>Micro</td>
<td>NiCoCrAlTaY</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>#4 (17/12/14)</td>
<td>S1</td>
<td>Submicro + Nano</td>
<td>ZrO2-Y2O3 + Gd2Zr2O7</td>
<td>1</td>
<td>Stage 2</td>
</tr>
<tr>
<td>#5 (08/01/15)</td>
<td>P2</td>
<td>Micro</td>
<td>NiCoCrAlTaY</td>
<td>3</td>
<td>Stage 3</td>
</tr>
<tr>
<td>#6 (08/01/15)</td>
<td>S2</td>
<td>Submicro</td>
<td>Gd2Zr2O7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>#7 (08/01/15)</td>
<td>S3</td>
<td>Nano</td>
<td>ZrO2-Y2O3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
air ventilation system where the air entrance was by a single point from the worker area.

- Stage 1: Corrective measures were applied in the emission zone (APS spraying chamber; Fig. 1, Zone B, and S1).
- Stage 2: Corrective measures were applied to the air extraction system.
- Stage 3: Corrective measures were applied in the worker area (Fig. 1, Zone A, and S1).

Detailed information of the applied corrective measures is provided in Section 3.2. A summary of the APS experiments carried out may be found in Table 1, showing the feedstocks used, the number of replicas available, and the specific characteristics of the experimental setup.

3. Results and discussion

3.1. UFP emissions and exposure concentrations during plasma spraying

Particle number concentrations and size distribution were monitored inside the plasma spraying chamber during the application of different feedstock as coatings. Background UFP number concentrations were representative of typical concentrations in an urban area (1.6 × 10^4/cm^3; Pérez et al., 2010; Reche et al., 2011), with D_p ranging between 40 and 70 nm characteristic of aged diesel exhaust aerosols (Brines et al., 2016; Dall’Osto et al., 2012). The influence of outdoor aerosols was high given that the doors of the pilot plant were open and connected directly to outdoor air.

Inside the chamber, results evidenced intense UFP emissions (Fig. 2) coinciding with the spraying events. Particle number concentrations increased by up to 3 orders of magnitude inside the chamber (in the order of 10^6/cm^3) with respect to background concentrations (10^3–10^4/cm^3, Table 2) inside the chamber prior to spraying. This pattern was consistent across the different replicas (Fig. 2). In the example shown in Fig. 2, as the spraying process was initiated (after closing the chamber doors) UFP concentrations increased coinciding with the ignition of the plasma plume. During this stage, average 10-second UFP concentrations reached 2.1 × 10^6/cm^3 in the spraying chamber, to subsequently peak at 6 × 10^6/cm^3 with a D_p of 25–30 nm during spraying of the feedstock. The emission pattern and measured UFP concentrations and D_p were mostly consistent across replicas. UFP formation may occur during three stages of thermal spray: (a) heating and melting of the feedstock, (b) acceleration of the droplets, and (c) impact and deposition stage.

During these stages, UFPs are likely to be formed through vaporisation and subsequent nucleation of emission gases, or through mechanical impactation (Huang et al., 2016). They may also be formed by nucleation linked to the emission of sulphur-containing gaseous precursors if these are present in the feedstock (Fonseca et al., 2016a). As shown in Fig. 2, the data monitored by the two particle counters deployed inside the chamber (DiscMini and NanoScan) were also consistent, thus confirming the high absolute concentration values measured despite the fact that the peak concentrations were outside the concentration range recommended by the instrument manufacturers (>10^6/cm^3).

The results from this study evidence the formation and release of UFPs during plasma spraying. A previous study focusing on a different kind of high velocity spraying (HVOF) reported coarse particle emissions (>10 μm in size) with a unique morphology of polygonal or irregular block of crushed powder, and finer dust particles (2.5 μm) in the form of irregular or flocculent agglomerates (Huang et al., 2016). The authors monitored particle mass concentrations (PM, as opposed to N in this work) reaching maximum concentrations of 140 mg/m^3, with time-weighted average concentrations of 34 mg/m^3. In such a highly polluted scenario PM concentration should be the preferred exposure metric. Due to the particle concentration levels monitored in the scenario assessed in the present work, N was considered a more targeted metric for emissions and exposure concentrations monitoring (Brouwer et al., 2014). In the (relatively) scarce literature on plasma spraying available, other studies report particle number concentrations in the same order of magnitude as monitored in the present study: 5.1 × 10^6/cm^3 near the emission source during flame spraying of silanes (Möhlmann, 2009), 3.6 × 10^6/cm^3 during flame spraying of Zn, Zn/Al and Al also at the emission source (Bémer et al., 2010), between 4.7 × 10^3 and 2.1 × 10^5/cm^3 inside the enclosure and between 4.6 × 10^3 and 1.4 × 10^5/cm^3 outside the enclosure during flame spraying of CeO_2 nanoparticles (Leppänen et al., 2012), between 4.0 × 10^6 and 40 × 10^6/cm^3 inside the spraying chamber during coating with TiO_2 and CuO nanoparticles (Koivistio et al., 2015), and up to 1.6 × 10^6/cm^3 during electric arc spraying of metals (Bémer et al., 2010).

The experimental setup described above was replicated for the different kinds of feedstock shown in Table 1, with the results shown in Fig. 3 and Table 2. In addition, lung-deposited surface area concentrations for the same experiments (ranging between 144 and 5436 μm^2/cm^3 in the worker area and between 1643 and 7802 μm^2/cm^3 inside the plasma chamber, during spraying) are shown in Table S1 in Supporting Information, as a measure of worker exposure. Plasma spraying generated high

![Fig. 2](image-url) Fig. 2: Top: Particle number concentrations (N, 10–700 nm with DiscMini; 10–420 nm with NanoScan SMPS) monitored during 3 replicas in experiment #2, using a micrometric powder (Na_2O; SiO_2; CaO; P_2O_5; 1% nano) as feedstock, in the plasma chamber and in outdoor air. Bottom: Particle size distribution monitored during 3 replicas in experiment #2. The plasma spraying activity of each replica is shown as a horizontal line between grey circles.
UFP emission concentrations under all scenarios, which ranged between 2.6×10^6 and 3.7×10^6 cm$^{-3}$ for experiments #1 to #3, and between 1.1×10^6 and 2.5×10^6 cm$^{-3}$ for experiments #4 to #7. This relative decrease was probably linked to the implementation of mitigation strategies which will be discussed below. The mean Dp distribution monitored during experiments carried out at different stages of the prevention protocol is shown in Fig. S2 in Supporting Information, including the following experiments: #2 and #3 (stage 1), #4 (stage 2) and #7 (stage 3). Aside from the differences obtained owing to the mitigation strategies, results evidence that major UFP emissions were generated during the application of both nano- and micron-sized suspensions and powders, thus suggesting that the emissions are related to the process and not only to the grain size distribution of the starting material. This is consistent with previous results (Huang et al., 2016). The feedstocks applied during experiments #4, #6 and #7 were characterised by mean Dp of 60 and 400 nm (Gd$_2$Zr$_2$O$_7$, and ZrO$_2$-Y$_2$O$_3$, respectively), whereas the remaining materials were predominantly micron-sized ($\geq 63 \mu$m) with only minor contributions (1% by weight) from nanomaterials in the case of ceramic glass powders. As shown in Fig. 3, mean Dp (with DiscMini) inside the chamber did not vary significantly across experiments and ranged between 4×10^2 and 1.5×10^3 nm.

Table 2

Mean UFP number concentrations (N/cm3) and particle diameter (nm) (standard deviations in brackets) inside the plasma chamber and in the worker area for each of the experiments performed, prior to and during the spraying activity. Data not available in the worker area for experiments #5 to #7 due to instrumental failures. Sampling frequency and time resolution of the instruments described in Section 2.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Feedstock grain size</th>
<th>Setup</th>
<th>UFP ($#/cm^3$)</th>
<th>Worker area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plasma chamber</td>
<td>Plasma spraying</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Background DiscMini NanoScan</td>
<td>Background DiscMini NanoScan</td>
</tr>
<tr>
<td>#1 Micro</td>
<td>Stage 0</td>
<td>9.1 x 10^3 (3.6 x 10^2)</td>
<td>9.2 x 10^3 (5.9 x 10^2)</td>
<td>2.6 x 10^6 (1.0 x 10^6)</td>
</tr>
<tr>
<td>#2 Micro</td>
<td>Stage 1</td>
<td>1.5 x 10^4 (1.4 x 10^3)</td>
<td>1.5 x 10^4 (1.5 x 10^3)</td>
<td>2.0 x 10^6 (1.5 x 10^6)</td>
</tr>
<tr>
<td>#3 Micro</td>
<td></td>
<td>1.6 x 10^5 (2.8 x 10^4)</td>
<td>2.0 x 10^5 (2.6 x 10^4)</td>
<td>7.7 x 10^6 (6.1 x 10^6)</td>
</tr>
<tr>
<td>#4 Submicro + Nano</td>
<td>Stage 2</td>
<td>2.6 x 10^6 (7.8 x 10^5)</td>
<td>2.9 x 10^6 (7.1 x 10^5)</td>
<td>3.7 x 10^6 (8.4 x 10^5)</td>
</tr>
<tr>
<td>#5 Micro</td>
<td>Stage 3</td>
<td>3.2 x 10^7 (1.1 x 10^6)</td>
<td>1.8 x 10^7 (1.2 x 10^6)</td>
<td>6.5 x 10^7 (6.7 x 10^6)</td>
</tr>
<tr>
<td>#6 Submicro</td>
<td></td>
<td>7.8 x 10^8 (5.3 x 10^7)</td>
<td>1.1 x 10^9 (6.7 x 10^7)</td>
<td>6.4 x 10^9 (5.0 x 10^8)</td>
</tr>
<tr>
<td>#7 Nano</td>
<td></td>
<td>6.4 x 10^9 (2.0 x 10^8)</td>
<td>6.0 x 10^9 (1.9 x 10^8)</td>
<td>2.5 x 10^10 (1.9 x 10^9)</td>
</tr>
</tbody>
</table>

Table 2: Mean UFP number concentrations (N/cm3) and particle diameter (nm) (standard deviations in brackets) inside the plasma chamber and in the worker area for each of the experiments performed, prior to and during the spraying activity. Data not available in the worker area for experiments #5 to #7 due to instrumental failures. Sampling frequency and time resolution of the instruments described in Section 2.
between 28 nm in experiment #2 (micron-scaled feedstock) and 45 nm in experiment #6 (nano-scaled feedstock), and showed no consistent pattern for either type of material. As a result, it may be concluded that UFP emissions from APS are process-related. No statistically relevant conclusions can be drawn with regard to N emitted with the different types of coatings due to the fact that the measurements were carried out under different exhaust ventilation conditions inside the chamber.

In order to characterise their morphology and chemical composition inside the chamber particles were sampled on TEM grids. It should be noted that TEM-EDX results are not quantitative, and refer to single particles identified. As expected, different particle morphologies were observed (Fig. 4, and Fig. S3 in Supporting Information). Fig. 4a shows an example of spherical particles originating from evaporation and condensation or fusion of the feedstock, in this case originating from the aqueous suspension containing submicron-sized particles (ZrO2-Y2O3). In addition, release of the pristine (original) ENPs was also identified (Fig. 4b), in the case of the Gd-based ENPs. Mauer et al. (2015) reported the difficulties in coating with Gd2Zr2O7 due to the fact that the material is partly decomposed inside the plasma plume and the Gd2O3 is evaporated. Thus, this confirms that the ENPs detected by TEM may have been originated due to a partial evaporation of the feedstock and subsequent condensation of the vapour. Given the high correlation between particle concentrations in the plasma chamber and in the worker area (Fig. 5), it is expectable that exposures to the ENPs detected inside the chamber occur in the breathing zone. Further studies are necessary to confirm this hypothesis. Finally, Ca-rich particles probably sourcing from the feedstock (Fig. 4c) were also observed. These results are also consistent with the variety of particle morphologies detected in previous studies (Huang et al., 2016).

3.2. Impact on exposure

Worker exposure to UFP emissions from the plasma chamber was assessed by placing monitoring instruments on a desk in close proximity to the worker and at breathing height, thus closely simulating breathing zone conditions (Asbach, 2015; Ojima, 2012). Plasma spraying activities inside the chamber had an evident and statistically significant impact (background + 3.σbackground; Asbach et al., 2012a, 2012b) in the worker area (Fig. 5). Worker area UFP concentrations followed an increasing pattern coinciding with the start of the spraying process, but with a 1–2 min delay due to transport from the chamber towards the worker area. In the example shown in Fig. 5, representative of experiments #2 to #3 (stage 1), UFP concentrations increased from 2.2 × 10^4/cm^3 prior to the spraying activity to 7.2 × 10^5/cm^3 during and after spraying. Mean Dp increased by 10–20 nm (Table 2) with regard to those measured inside the plasma chamber probably due to particle transport and ageing between the two measurement locations (approximately 2 m). The uncertainty of the monitoring instrumentation should evidently be taken into account for this assessment. As a result it may be concluded that, for experiments #1 to #3, the exhaust system in place was able to remove between 68% and 91% of the UFP monitored inside the plasma chamber.
resulting in significant exposure concentrations in the potential breathing zone and with potentially health hazardous Dp (33–51 nm; Table 2).

Aside from the actual spraying periods, worker exposures also occurred during cleaning (by using a vacuum cleaner) of the chamber at the end of each spraying process. As expected, this activity impacted PM10 and PM2.5 concentrations due to the coarser Dp of the particles resuspended, with concentrations increasing from 5 to 350 μg PM2.5/m3 (Fig. 6). Conversely, emissions from direct APS had lower impacts on PM2.5 mass, even though they were also statistically significant (Asbach et al., 2012b). Even though the impacts of APS on PM mass in our study are markedly lower than in previous studies (Huang et al., 2016), it is probable that the cause are the different concentration and exposure ranges in both plasma spraying scenarios, possibly influenced by the different technologies applied (APS vs. HVOF).

In order to reduce exposure concentrations, the prevention protocol described in the Methods section was applied by implementing the following measures:

- **Stage 1:** Improved air circulation in the plasma chamber using a multipoint system surrounding the plasma flame, as well as a delayed door-opening protocol. The air intake into the plasma room was changed from the worker area to directly from outdoor air.
- **Stage 2:** Enhanced sealing of the extraction system ducts from the chamber to the exhaust, to prevent the flow of UFP concentrations towards the worker area.
- **Stage 3:** Enhanced air exchange rates through forced ventilation in the worker area (to approximately 14 air exchanges per hour, in contrast to the original 2 air exchanges per hour).

Reductions in exposure concentrations in the worker area (potential breathing zone) are evident after the implementation of the mitigation strategies (Table 2). The comparison between experiments #1 and #2 evidences a reduction of UFP concentrations of approximately 70% (from 8.3 × 10^5 to 2.7 × 10^5/cm^3, monitored with DiscMini). Likewise, the comparison between experiments #3 and #6 shows a 75% reduction of UFP concentrations between stages 1 and 3 (from 1.8 × 10^5 to 4.4 × 10^4/cm^3, monitored with the CPC). Even though the reductions observed are experiment-dependent and data are not available from the same instrument for all experiments for direct comparison, these results evidence the benefits of the exposure mitigation protocol implemented. Exposure reductions were monitored in the worker area, while concentrations remained relatively constant (same order of magnitude) inside the spraying chamber.

Finally, UFP concentrations in the worker area after the implementation of the mitigation strategies (1.9 × 10^4/cm^3, measured with the CPC) were comparable to those monitored in urban environments in European cities such as Barcelona, London or Bern (1.2 × 10^4–2.8 × 10^4/cm^3; Reche et al., 2011). Worker protection measures were still recommended for these concentrations.

Fig. 5. Particle number concentrations (N, 10–700 nm with DiscMini; 4 nm to 1.5 μm with CPC) monitored during one of the replicas in experiment #2, using a micron-sized powder (Na2O; SiO2; CaO; P2O5; 1% nano) as feedstock. Measurements carried out in the plasma chamber, in the worker area, and in outdoor air. The plasma spraying activity is shown as a horizontal line between grey circles. The smoothness of the CPC curve when compared to the DiscMini data results from the different time resolution of the raw data (60s for CPC, 10s for DiscMini).

Fig. 6. Top: Impact of cleaning activities on particle mass concentrations (PM2.5) in the plasma chamber. Bottom: Particle size distribution monitored in the worker area by Grimm 1.108. Work activities such as plasma spraying or cleaning are shown as a horizontal line between grey circles.
3.3. Impact on environmental release

In addition to exposure, APS emissions impacted outdoor air concentrations. Environmental release of UFPs, monitored on the rooftop of the pilot plant (5 m above ground) in the vicinity of the exhaust system (1 m), was evidenced through a 1-order of magnitude increase in UFP concentrations (1.7 × 10^4/cm^3 to 2.5 × 10^5/cm^3; Fig. 5), which was again observed across all replicates (Fig. 2). As in the case of the worker area, this increase should also be considered statistically significant (Asbach et al., 2012a, 2012b). The potential environmental or health impacts of these emissions should be further investigated, even if they are expected to be low due to (a) the short temporal impact of the emissions (<2 min), (b) their fast diffusion in outdoor air, and (c) the fast coagulation/agglomeration of particles and thus their increase in particle diameter. APS may be used to apply a broad variety of coatings which potentially contain health hazardous metals (e.g., Cr, Co, W, etc.), in which case environmental release of such metal-rich UFPs should be monitored and prevented (Li et al., 2016) using appropriate gas cleaning systems.

4. Conclusions

Ultrafine particle emissions and their impact on workplace exposure concentrations were monitored during atmospheric plasma spraying (APS) in an industrial-scale pilot plant. Particle diameters monitored ranged between 10 and 700 nm but are reported as UFP given that 80% of total N is generally found in the <100 nm size range (Hinds, 1999). UFP emissions were expected due to the high-energy nature of this industrial process. Results evidenced high UFP emission concentrations during APS reaching up to 3.7 × 10^4/cm^3 inside the spraying chamber with Dp ranging between 28 and 45 nm. Worker area (potential breathing zone) concentrations reached up to 2.0 × 10^5/cm^3 (33–48 nm in diameter). These concentrations were statistically significantly higher than the initial background concentrations of 10^1–10^3/cm^3, and thus evidence the health hazardous potential of this industrial process. The nature of the emissions was investigated by testing micron- and nano-sized feedstocks, including engineered nanoparticles (ENPs). The mean Dp inside the APS chamber did not vary significantly across experiments and showed no consistent differences between the different feedstocks. Thus, it was concluded that UFP emissions were detected irrespective of the presence of ENPs in the feedstock, and that they were therefore process-related. In a minor proportion, release of pristine ENPs to the plasma chamber air was also evidenced by TEM microscopy. Nanoparticle formation originating from condensation of the evaporated feedstock was also detected. A risk prevention protocol was applied to the studied facility, leading to significant reductions in worker area UFP concentrations. This work evidences the relevance of process-generated emissions with regard to workplace exposure to nanoparticles, and the need for real-world assessments in order to identify exposure risks and improve indoor air quality in industrial settings by implementing effective prevention protocols.

Acknowledgements

This project was supported by the Spanish MINECO through project PCIN-2015-173-C02-01, under the frame of SIINN, the ERA-NET for a Safe Implementation of Innovative Nanoscience and Nanotechnology, by SIINN-ERANET project CERASEA (id:16). Support is also acknowledged to FP7 Marie Curie ITN HEXACOMM (Nr. 315760), Generalitat de Catalunya (AGAUR SGR33), and the Spanish Ministry of the Environment (13CAES006).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.scitotenv.2017.05.132.

References

